
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Review for ECE/CS 552: Review for FinalFinal
Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Midterm 2 DetailsMidterm 2 Details

 Final exam slot: Mon., 12/20, 12:25pm, EH2317
 No calculators, electronic devices
 Bring cheat sheet

8 5x11 sheet of paper

2

– 8.5x11 sheet of paper
 Similar to midterm

– Some design problems
– Some analysis problems
– Some multiple-choice problems

 Check learn@uw for recorded grades

Midterm ScopeMidterm Scope
 Chapter 3.3-3.5:

– Multiplication, Division, Floating Point
 Chapter 4.10-4.11: Enhancing performance

– Superscalar lecture notes
MIPS R10K reading on course web page

3

– MIPS R10K reading on course web page
 Chapter 5: Memory Hierarchy

– Caches, virtual memory
– SECDED (handout)

 Chapter 6: I/O
 Chapter 5.7-5.9, 7: Multiprocessors

– Lecture notes on power and multicore
– Lecture notes on multithreading

Integer Multiply and DivideInteger Multiply and Divide

 Integer multiply
– Combinational

– Multicycle

4

y

– Booth’s algorithm

 Integer divide
– Multicycle restoring

– Non-restoring

MultiplicationMultiplication

 Flashback to 3rd grade
– Multiplier
– Multiplicand
– Partial products

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

5

– Partial products
– Final sum

 Base 10: 8 x 9 = 72
– PP: 8 + 0 + 0 + 64 = 72

 How wide is the result?
– log(n x m) = log(n) + log(m)
– 32b x 32b = 64b result

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

MultiplierMultiplier

32 bits

Multiplicand

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

6

Control
testWrite

64 bits

Shift right
Product

32-bit ALU

ECE/CS 552: Introduction To Computer Architecture 2

Multiplier Multiplier
1. Test

Product0

1a. Add multiplicand to the left half of
the product and place the resu lt in

the left half of the Product register

Start

Product0 = 0Product0 = 1

7D one

2. Sh ift the Product reg ister right 1 bit

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Booth’s AlgorithmBooth’s Algorithm
Current
bit

Bit to
right

Explanation Example Operation

1 0 Begins run of ‘1’ 00001111000 Subtract

8

1 1 Middle of run of ‘1’ 00001111000 Nothing

0 1 End of a run of ‘1’ 00001111000 Add

0 0 Middle of a run of ‘0’ 00001111000 Nothing

Booth’s EncodingBooth’s Encoding

 Really just a new way to encode numbers
– Normally positionally weighted as 2n

– With Booth, each position has a sign bit

9

, p g

– Can be extended to multiple bits

0 1 1 0 Binary
+1 0 -1 0 1-bit Booth
+2 -2 2-bit Booth

22--bits/cycle Booth Multiplierbits/cycle Booth Multiplier

 For every pair of multiplier bits
– If Booth’s encoding is ‘-2’

 Shift multiplicand left by 1, then subtract

– If Booth’s encoding is ‘-1’

10

If Booth s encoding is 1
 Subtract

– If Booth’s encoding is ‘0’
 Do nothing

– If Booth’s encoding is ‘1’
 Add

– If Booth’s encoding is ‘2’
 Shift multiplicand left by 1, then add

2 bits/cycle Booth’s2 bits/cycle Booth’s

Current Previous Operation Explanation

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M

1 bit Booth

00 +0

01 +M;

10 -M;

11 +0

11

01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0

Integer DivisionInteger Division
 Again, back to 3rd grade

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

12

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

ECE/CS 552: Introduction To Computer Architecture 3

Improved Improved
DividerDivider

T e s t R e m a in d e r

S ta r t

R e m a in d e r < 0

2 . S u b t ra c t th e D iv is o r re g is te r f ro m th e
le f t h a lf o f th e R e m a in d e r re g is te r a n d
p la c e th e re s u lt in th e le ft h a l f o f th e

R e m a in d e r re g is te r

R e m a in d e r 0

1 . S h if t t h e R e m a in d e r re g is t e r le f t 1 b i t

–>

13D o n e . S h ift le ft h a l f o f R e m a in d e r r ig h t 1 b it

3 a . S h ift th e R e m a in d e r re g is te r to th e
 le ft , s e tt in g t h e n e w r ig h tm o s t b it to 1

3 2 n d re p e t it io n ?
N o : < 3 2 re p e t i t io n s

Y e s : 3 2 r e p e t i t io n s

3 b . R e s t o re th e o r ig in a l v a lu e b y a d d in g
th e D iv is o r re g is te r to th e le f t h a lf o f th e

R e m a in d e r re g is te r a n d p la ce th e s u m
 in th e le f t h a lf o f th e R e m a in d e r re g is te r .

A ls o s h if t th e R e m a in d e r re g is te r to th e
le ft , s e t tin g t h e n e w r ig h tm o s t b i t to 0

Improved Divider Improved Divider

32 bits

Divisor

14

Write

64 bits

Shift left
Shift right

Remainder

32-bit ALU

Control
test

NonNon--restoring Divisionrestoring Division

 Consider remainder to be restored:
Ri = Ri-1 – d < 0

– Since Ri is negative, we must restore it, right?

15

– Well, maybe not. Consider next step i+1:

Ri+1 = 2 x (Ri) – d = 2 x (Ri – d) + d

 Hence, we can compute Ri+1 by not restoring Ri,
and adding d instead of subtracting d
– Same value for Ri+1 results

 Throughput of 1 bit per cycle

NR Division ExampleNR Division Example
Iteration Step Divisor Remainder

0
Initial values 0010 0000 0111
Shift rem left 1 0010 0000 1110

1
2: Rem = Rem - Div 0010 1110 1110
3b: Rem < 0 (add next), sll 0 0010 1101 1100

16

(),

2
2: Rem = Rem + Div 0010 1111 1100
3b: Rem < 0 (add next), sll 0 0010 1111 1000

3
2: Rem = Rem + Div 0010 0001 1000
3a: Rem > 0 (sub next), sll 1 0010 0011 0001

4
Rem = Rem – Div 0010 0001 0001
Rem > 0 (sub next), sll 1 0010 0010 0011
Shift Rem right by 1 0010 0001 0011

Floating Point SummaryFloating Point Summary

 Floating point representation
– Normalization

– Overflow, underflow

17

,

– Rounding

 Floating point add
 Floating point multiply

Floating PointFloating Point

 Still use a fixed number of bits
– Sign bit S, exponent E, significand F

– Value: (-1)S x F x 2E

18

 IEEE 754 standard

Size Exponent Significand Range

Single precision 32b 8b 23b 2x10+/-38

Double precision 64b 11b 52b 2x10+/-308

S E F

ECE/CS 552: Introduction To Computer Architecture 4

Floating Point NormalizationFloating Point Normalization

 S,E,F representation allows more than one
representation for a particular value, e.g.
1.0 x 105 = 0.1 x 106 = 10.0 x 104

– This makes comparison operations difficult

19

This makes comparison operations difficult
– Prefer to have a single representation

 Hence, normalize by convention:
– Only one digit to the left of the floating point
– In binary, that digit must be a 1

 Since leading ‘1’ is implicit, no need to store it
 Hence, obtain one extra bit of precision for free

FP Overflow/UnderflowFP Overflow/Underflow

 FP Overflow
– Analogous to integer overflow
– Result is too big to represent

20

– Means exponent is too big
 FP Underflow

– Result is too small to represent
– Means exponent is too small (too negative)

 Both raise an exception under IEEE754

FP RoundingFP Rounding

 Rounding is important
– Small errors accumulate over billions of ops

 FP rounding hardware helps

21

– Compute extra guard bit beyond 23/52 bits

– Further, compute additional round bit beyond that
 Multiply may result in leading 0 bit, normalize shifts guard

bit into product, leaving round bit for rounding

– Finally, keep sticky bit that is set whenever ‘1’ bits
are “lost” to the right
 Differentiates between 0.5 and 0.500000000001

FP FP
Adder Adder

0 10 1 0 1

Control

Small ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right
Shift smaller
number right

Compare
exponents

22

Big ALU

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Add

Normalize

Round

FP MultiplicationFP Multiplication

 Sign: Ps = As xor Bs

 Exponent: PE = AE + BE
– Due to bias/excess, must subtract bias

e = e1 + e2

23

e e1 + e2
E = e + 1023 = e1 + e2 + 1023
E = (E1 – 1023) + (E2 – 1023) + 1023
E = E1 + E2 –1023

 Significand: PF = AF x BF
– Standard integer multiply (23b or 52b + g/r/s bits)
– Use Wallace tree of CSAs to sum partial products

FP MultiplicationFP Multiplication

 Compute sign, exponent, significand
 Normalize

– Shift left, right by 1

24

Shift left, right by 1

 Check for overflow, underflow
 Round
 Normalize again (if necessary)

ECE/CS 552: Introduction To Computer Architecture 5

Limitations of Scalar PipelinesLimitations of Scalar Pipelines

 Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1

– Solution: wide (superscalar) pipeline

25

 Inefficient unified pipeline
– Long latency for each instruction

– Solution: diversified, specialized pipelines

 Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions

– Solution: Out-of-order execution

Impediments to High IPCImpediments to High IPC

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

26

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

Instruction FlowInstruction Flow

 Objective: Fetch multiple instructions per cycle
 Challenges:

– Branches: control dependences

27

 Predict target and direction

– Branch target misalignment
 Target near end of line

 Alignment hardware, etc.

– Instruction cache misses
 Cache organization

 Prefetching, etc.

Instruction Memory

PC

3 instructions fetched

Branch Condition PredictionBranch Condition Prediction

TT
T

N

T

NT
T

TNTN
NN
N

T

T
T

N

TT
T

Branch inst. Information Branch target
address for predict. address

28

 Hardware table remembers
– History of past several branches encoded by FSM
– Current state used to generate prediction

 State of the art:
– Multiple FSMs, dynamically pick “best” one
– Major topic in 752 and research community

TN
T

TN
T N

N
N

Register Data FlowRegister Data Flow

 Program data dependences cause hazards
– True dependences (RAW)
– Antidependences (WAR)

29

– Output dependences (WAW)
 When are registers read and written?

– Out of program order!
– Hence, any/all of these can occur

 Solution to all three: register renaming

Register RenamingRegister Renaming
Dispatch Buffer

Reservation

Dispatch

Stations

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data

- Advance instructions
 to reservation stations

30
Complete

“Dynamic

Completion Buffer

Branch

Execution”

 being forwarded
- Issue when all
 operands ready

ECE/CS 552: Introduction To Computer Architecture 6

Memory Data FlowMemory Data Flow

 Main impediments:
– Memory data dependences:

 WAR/WAW: stores commit in order
Hazards not possible Why?

31

– Hazards not possible. Why?

 RAW: loads must check pending stores
– Store queue keeps track of pending store addresses

– Loads check against these addresses

– Similar to register bypass logic

– Comparators are 32 or 64 bits wide (address size)

 Major source of complexity in modern designs

– Data cache misses

Superscalar SummarySuperscalar Summary

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

32

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

Superscalar SummarySuperscalar Summary

 Instruction flow
– Branches, jumps, calls: predict target, direction
– Fetch alignment
– Instruction cache misses

33

– Instruction cache misses
 Register data flow

– Register renaming: RAW/WAR/WAW
 Memory data flow

– In-order stores: WAR/WAW
– Store queue: RAW
– Data cache misses

Memory HierarchyMemory Hierarchy

 Memory
– Just an “ocean of bits”
– Many technologies are available

 Key issues

34

 Key issues
– Technology (how bits are stored)
– Placement (where bits are stored)
– Identification (finding the right bits)
– Replacement (finding space for new bits)
– Write policy (propagating changes to bits)

 Must answer these regardless of memory type

Types of MemoryTypes of Memory
Type Size Speed Cost/bit

Register < 1KB < 1ns $$$$

On-chip SRAM 8KB-6MB < 10ns $$$

35

p

Off-chip SRAM 1Mb – 16Mb < 20ns $$

DRAM 64MB – 1TB < 100ns $

Disk 40GB – 1PB < 20ms ~0

Memory HierarchyMemory Hierarchy

Registers

On-Chip
SRAMCI

TY

O
ST

36

Off-Chip
SRAM

DRAM

Disk

CA
PA

C

SP
EE

D
 a

nd
 C

O

ECE/CS 552: Introduction To Computer Architecture 7

 Need lots of bandwidth

Why Memory Hierarchy?Why Memory Hierarchy?

65

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW

37

 Need lots of storage
– 64MB (minimum) to multiple TB

 Must be cheap per bit
– (TB x anything) is a lot of money!

 These requirements seem incompatible

sec

6.5 GB

Why Memory Hierarchy?Why Memory Hierarchy?

 Fast and small memories
– Enable quick access (fast cycle time)
– Enable lots of bandwidth (1+ L/S/I-fetch/cycle)

 Slower larger memories

38

 Slower larger memories
– Capture larger share of memory
– Still relatively fast

 Slow huge memories
– Hold rarely-needed state
– Needed for correctness

 All together: provide appearance of large, fast
memory with cost of cheap, slow memory

Why Does a Hierarchy Work?Why Does a Hierarchy Work?

 Locality of reference
– Temporal locality

 Reference same memory location repeatedly

i l l li

39

– Spatial locality
 Reference near neighbors around the same time

 Empirically observed
– Significant!
– Even small local storage (8KB) often satisfies

>90% of references to multi-MB data set

Why Locality?Why Locality?

 Analogy:
– Library (Disk)
– Bookshelf (Main memory)
– Stack of books on desk (off-chip cache)

40

– Stack of books on desk (off-chip cache)
– Opened book on desk (on-chip cache)

 Likelihood of:
– Referring to same book or chapter again?

 Probability decays over time
 Book moves to bottom of stack, then bookshelf, then library

– Referring to chapter n+1 if looking at chapter n?

Memory HierarchyMemory Hierarchy
CPU

I & D L1 Cache

Temporal Locality
•Keep recently referenced
items at higher levels

•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels

•Future references satisfied
quickly

41

Shared L2 Cache

Main Memory

Disk

Four Burning QuestionsFour Burning Questions
 These are:

– Placement
 Where can a block of memory go?

– Identification
 How do I find a block of memory?

42

 How do I find a block of memory?

– Replacement
 How do I make space for new blocks?

– Write Policy
 How do I propagate changes?

 Consider these for caches
– Usually SRAM

 Will consider main memory, disks later

ECE/CS 552: Introduction To Computer Architecture 8

Caches: SetCaches: Set--associativeassociative
SRAM Cache

Hash

Address

Index
a Tags a Data Blocks

Index

43

Data Out

Offset

?=
?=

?=
?=

Tag

Caches: DirectCaches: Direct--MappedMapped

Hash

Address

Index
Tag Data

Index

44

Data Out

Offset

?=
Tag

Caches: FullyCaches: Fully--associativeassociative

SRAM CacheHash

Address

a Tags a Data Blocks

45

Data Out

Offset

?=
?=

?=
?=

Tag

Placement and IdentificationPlacement and Identification

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

I d i l (b f) S l f bl k

46

 Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)
– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)
– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

 Total size = BS x B = BS x S x (B/S)

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

Cache ExampleCache Example
Tag0 Tag1 LRU

01 11 1

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

47

10 d 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss
Load 0x33 110011 0/1 Miss
Load 0x11 010001 0/0 (lru) Miss/Evict
Store 0x29 101001 2/0 Hit/Dirty

II--Caches and PipeliningCaches and Pipelining
PC Tag Array Data Array

48

IR
“NOP”

Hit/Miss

?=

Fill FSM

Memory

FILL FSM:
1. Fetch from memory

• Critical word first
• Save in fill buffer

2. Write data array
3. Write tag array
4. Miss condition ends

ECE/CS 552: Introduction To Computer Architecture 9

DD--Caches and PipeliningCaches and Pipelining

 Pipelining loads from cache
– Hit/Miss signal from cache

– Stalls pipeline or inject NOPs?

49

p p j
 Hard to do in current real designs, since wires are

too slow for global stall signals

– Instead, treat more like branch misprediction
 Cancel/flush pipeline

 Restart when cache fill logic is done

DD--Caches and PipeliningCaches and Pipelining

 Stores more difficult
– MEM stage:

 Perform tag check
 Only enable write on a hit

50

y
 On a miss, must not write (data corruption)

– Problem:
 Must do tag check and data array access sequentially
 This will hurt cycle time

– Better solutions exist
 Beyond scope of this course
 If you want to do a data cache in your project, come talk to

me!

Caches and PerformanceCaches and Performance

 Caches
– Enable design for common case: cache hit

 Cycle time, pipeline organization

 Recovery policy

51

 Recovery policy

– Uncommon case: cache miss
 Fetch from next level

– Apply recursively if multiple levels

 What to do in the meantime?

 What is performance impact?
 Various optimizations are possible

Cache Misses and Cache Misses and
PerformancePerformance
 How does this affect performance?
 Performance = Time / Program

Instructions Cycles Time= X X

52

 Cache organization affects cycle time
– Hit latency

 Cache misses affect CPI

y

Program Instruction Cycle

(code size)

= X X

(CPI) (cycle time)

Cache Misses and CPICache Misses and CPI

 Pl is miss penalty at each of n levels of cache
 MPIl is miss rate per instruction at each of n

l

n

l
l

hit MPIP
inst

cycles
CPI

1

53

 MPIl is miss rate per instruction at each of n
levels of cache

 Miss rate specification:
– Per instruction: easy to incorporate in CPI
– Per reference: must convert to per instruction

 Local: misses per local reference
 Global: misses per ifetch or load or store

Cache Miss RateCache Miss Rate

 Determined by:
– Program characteristics

 Temporal locality

54

 Spatial locality

– Cache organization
 Block size, associativity, number of sets

ECE/CS 552: Introduction To Computer Architecture 10

Cache Miss Rates: 3 C’s [Hill]Cache Miss Rates: 3 C’s [Hill]

 Compulsory miss
– First-ever reference to a given block of memory

 Capacity

55

– Working set exceeds cache capacity

– Useful blocks (with future references) displaced

 Conflict
– Placement restrictions (not fully-associative) cause

useful blocks to be displaced

– Think of as capacity within set

Caches SummaryCaches Summary

 Four questions
– Placement

 Direct-mapped, set-associative, fully-associative

56

– Identification
 Tag array used for tag check

– Replacement
 LRU, FIFO, Random

– Write policy
 Write-through, writeback

Caches SummaryCaches Summary

 Hit latency

l

n

l
l

hit MPIP
inst

cycles
CPI

1

57

– Block size, associativity, number of blocks

 Miss penalty
– Overhead, fetch latency, transfer, fill

 Miss rate
– 3 C’s: compulsory, capacity, conflict

– Determined by locality, cache organization

Register FileRegister File

 Registers managed by programmer/compiler
– Assign variables, temporaries to registers

– Limited name space matches available storage

58

– Learn more in CS536, CS701

Placement Flexible (subject to data type)

Identification Implicit (name == location)

Replacement Spill code (store to stack frame)

Write policy Write-back (store on replacement)

Main Memory and Virtual MemoryMain Memory and Virtual Memory

 Use of virtual memory
– Main memory becomes another level in the memory

hierarchy
– Enables programs with address space or working set

59

Enables programs with address space or working set
that exceed physically available memory
 No need for programmer to manage overlays, etc.
 Sparse use of large address space is OK

– Allows multiple users or programs to timeshare
limited amount of physical memory space and address
space

 Bottom line: efficient use of expensive resource,
and ease of programming

Virtual MemoryVirtual Memory

 Enables
– Use more memory than system has
– Think program is only one running

 Don’t have to manage address space usage across programs

60

 Don t have to manage address space usage across programs
 E.g. think it always starts at address 0x0

– Memory protection
 Each program has private VA space: no-one else can clobber

it

– Better performance
 Start running a large program before all of it has been loaded

from disk

ECE/CS 552: Introduction To Computer Architecture 11

Address TranslationAddress Translation

 O/S and hardware communicate via PTE

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute

61

 O/S and hardware communicate via PTE
 How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)

– PTBR is private for each program
 Context switch replaces PTBR contents

Address TranslationAddress Translation

PAVADPTBR

Virtual Page Number Offset

+

62

PAVADPTBR +

Multilevel Page TableMultilevel Page Table

PTBR +

Offset

63

+

+

Hashed Page TableHashed Page Table

PTBR

Virtual Page Number Offset

H h PTE2PTE1PTE0 PTE3

64

PTBR Hash PTE2PTE1PTE0 PTE3

HighHigh--Performance VMPerformance VM

 VA translation
– Additional memory reference to PTE
– Each instruction fetch/load/store now 2 memory

references

65

references
 Or more, with multilevel table or has collisions

– Even if PTE are cached, still slow
 Hence, use special-purpose cache for PTEs

– Called TLB (translation lookaside buffer)
– Caches PTE entries
– Exploits temporal and spatial locality (just a cache)

TLB TLB

66

ECE/CS 552: Introduction To Computer Architecture 12

Virtual Memory ProtectionVirtual Memory Protection
 Each process/program has private virtual address

space
– Automatically protected from rogue programs

 Sharing is possible, necessary, desirable
– Avoid copying staleness issues etc

67

Avoid copying, staleness issues, etc.
 Sharing in a controlled manner

– Grant specific permissions
 Read
 Write
 Execute
 Any combination

– Store permissions in PTE and TLB

VM SharingVM Sharing

 Share memory locations by:
– Map shared physical location into both

address spaces:

68

 E.g. PA 0xC00DA becomes:
– VA 0x2D000DA for process 0

– VA 0x4D000DA for process 1

– Either process can read/write shared location

 However, causes synonym problem

VA SynonymsVA Synonyms

 Virtually-addressed caches are desirable
– No need to translate VA to PA before cache lookup

– Faster hit time, translate only on misses

bl

69

 However, VA synonyms cause problems
– Can end up with two copies of same physical line

 Solutions:
– Flush caches/TLBs on context switch

– Extend cache tags to include PID
 Effectively a shared VA space (PID becomes part of address)

Error Detection and CorrectionError Detection and Correction

 Main memory stores a huge number of bits
– Probability of bit flip becomes nontrivial
– Bit flips (called soft errors) caused by

 Slight manufacturing defects

70

 Slight manufacturing defects
 Gamma rays and alpha particles
 Interference
 Etc.

– Getting worse with smaller feature sizes
 Reliable systems must be protected from soft

errors via ECC (error correction codes)
– Even PCs support ECC these days

Error Correcting CodesError Correcting Codes
 Probabilities:

– P(1 word no errors) > P(single error) > P(two errors)
>> P(>2 errors)

 Detection - signal a problem

71

 Detection - signal a problem

 Correction - restore data to correct value

 Most common

– Parity - single error detection

– SECDED - single error correction; double bit
detection

11--bit ECCbit ECC
Power Correct #bits Comments

Nothing 0,1 1

SED 00 11 2 01 10 detect errors

72

SED 00,11 2 01,10 detect errors

SEC 000,111 3 001,010,100 => 0
110,101,011 => 1

SECDED 0000,1111 4 One 1 => 0
Two 1’s => error
Three 1’s => 1

ECE/CS 552: Introduction To Computer Architecture 13

ECCECC

 Reduced overhead by doing codes on
word, not bit

bits SED overhead SECDED overhead

73

bits SED overhead SECDED overhead

1 1 (100%) 3 (300%)

32 1 (3%) 7 (22%)

64 1 (1.6%) 8 (13%)

n 1 (1/n) 1 + log2 n + a little

6464--bit ECCbit ECC

 64 bits data with 8 check bits
dddd…..d ccccccccc

 Use eight by 9 SIMMS = 72 bits

74

 Intuition
– One check bit is parity
– Other check bits point to

 Error in data, or
 Error in all check bits, or
 No error

ECCECC

 To store (write)
– Use data0 to compute check0

– Store data0 and check0

75

0 0

 To load
– Read data1 and check1

– Use data1 to compute check2

– Syndrome = check1 xor check2

 I.e. make sure check bits are equal

44--bit SECDED Examplebit SECDED Example
Bit Position 1 2 3 4 5 6 7 8

Codeword C1 C2 b1 C3 b2 b3 b4 P

Original data 1 0 1 1 0 1 0 0 Syndrome

No corruption 1 0 1 1 0 1 0 0 0 0 0, P ok

1 bit corrupted 1 0 0 1 0 1 0 0 0 1 1, P !ok

parityevenP

bbbC

bbbC

bbbC

_
4323

4312

4211

76

 4 data bits, 3 check bits, 1 parity bit
 Syndrome is xor of check bits C1-3

– If (syndrome==0) and (parity OK) => no error
– If (syndrome != 0) and (parity !OK) => flip bit position pointed

to by syndrome
– If syndrome != 0) and (parity OK) => double-bit error

p ,

2 bits corrupted 1 0 0 1 1 1 0 0 1 1 0, P ok

Memory Hierarchy SummaryMemory Hierarchy Summary

 Memory hierarchy: Register file
– Under compiler/programmer control

– Complex register allocation algorithms to optimize
tili ti

77

utilization

 Memory hierarchy: Virtual Memory
– Placement: fully flexible

– Identification: through page table

– Replacement: approximate LRU or LFU

– Write policy: write-through

VM SummaryVM Summary

 Page tables
– Forward page table

 &PTE = PTBR + VPN * sizeof(PTE)

M ltil l t bl

78

– Multilevel page table
 Tree structure enables more compact storage for sparsely

populated address space

– Inverted or hashed page table
 Stores PTE for each real page instead of each virtual page

 HPT size scales up with physical memory

– Also used for protection, sharing at page level

ECE/CS 552: Introduction To Computer Architecture 14

Main Memory SummaryMain Memory Summary

 TLB
– Special-purpose cache for PTEs
– Often accessed in parallel with L1 cache

 Main memory design

79

 Main memory design
– Commodity DRAM chips
– Wide design space for

 Minimizing cost, latency
 Maximizing bandwidth, storage

– Susceptible to soft errors
 Protect with ECC (SECDED)
 ECC also widely used in on-chip memories, busses

I/O Device ExamplesI/O Device Examples
Device I or O? Partner Data Rate

KB/s
Mouse I Human 0.01

Display O Human 60,000

80

Modem I/O Machine 2-8

LAN I/O Machine 500-6000

Tape Storage Machine 2000

Disk Storage Machine 2000-
100,000

I/O PerformanceI/O Performance

 What is performance?
 Supercomputers read/write 1GB of data

– Want high bandwidth to vast data (bytes/sec)
 Transaction processing does many independent

81

 Transaction processing does many independent
small I/Os
– Want high I/O rates (I/Os per sec)
– May want fast response times

 File systems
– Want fast response time first
– Lots of locality

Buses in a Buses in a
Computer Computer
System System

Processor Memory
Backplane bus

a. I/O devices

Processor Memory
Processor-memory bus

Bus

adapter
Bus

adapter

I/O
bus

I/O
bus

Bus

adapter

I/O
bus

82

b.

Processor Memory
Processor-memory bus

c.

Bus
adapter

Backplane
bus

Bus
adapter

I/O bus

Bus
adapter

I/O bus

BusesBuses

 Synchronous – has clock
– Everyone watches clock and latches at appropriate

phase

T ti t k fi d i bl b f l k

83

– Transactions take fixed or variable number of clocks

– Faster but clock limits length

– E.g. processor-memory

 Asynchronous – requires handshake
– More flexible

– I/O

Interfacing to I/O DevicesInterfacing to I/O Devices
I/O Device Communication

Control Flow Granularity

Mechanics of Control Flow

Outbound Control Flow

Programmed I/O

Fine-grained (shallow adapters)
Coarse-grained (deep adapters, e.g. channels)

84

Mechanics of Data Flow

Programmed I/O
Direct Memory Access (DMA)

Software Cache Coherence
Hardware Cache Coherence

Inbound Control Flow

Programmed I/O
Memory-mapped Control Registers

Polling
Interrupt-driven

ECE/CS 552: Introduction To Computer Architecture 15

MultiprogrammingMultiprogramming
Single User:

CPU1 Disk Access CPU1 Think Time

CPU1

Disk Access

CPU1

Think Time

Time-shared:

85

CPU2

Disk Access

CPU2

Think Time

CPU3

Disk Access

CPU3

Think Time

Summary Summary –– I/OI/O

 I/O devices
– Human interface – keyboard, mouse, display
– Nonvolatile storage – hard drive, tape
– Communication – LAN modem

86

– Communication – LAN, modem
 Buses

– Synchronous, asynchronous
– Custom vs. standard

 Interfacing
– O/S: protection, virtualization, multiprogramming
– Interrupts, DMA, cache coherence

Multiprocessor MotivationMultiprocessor Motivation

 So far: one processor in a system
 Why not use N processors

– Higher throughput via parallel jobs
Cost effective

87

– Cost-effective
 Adding 3 CPUs may get 4x throughput at only 2x cost

– Lower latency from multithreaded applications
 Software vendor has done the work for you
 E.g. database, web server

– Lower latency through parallelized applications
 Much harder than it sounds

Connect at Memory: Connect at Memory:
MultiprocessorsMultiprocessors
 Shared Memory Multiprocessors

– All processors can address all physical memory

– Demands evolutionary operating systems changes

88

– Higher throughput with no application changes

– Low latency, but requires parallelization with proper
synchronization

 Most successful: Symmetric MP or SMP
– 2-64 microprocessors on a bus

– Too much bus traffic so add caches

Leakage Power (Static/DC)Leakage Power (Static/DC)
 Transistors aren’t perfect on/off switches
 Even in static CMOS, transistors leak

– Channel (source/drain) leakage
– Gate leakage through insulator

 High-K dielectric replacing SiO2 helps
 Leakage compounded by

Source

Gate

g p y
– Low threshold voltage

 Low Vth => fast switching, more leakage
 High Vth => slow switching, less leakage

– Higher temperature
 Temperature increases with power
 Power increases with C, V2, A, f

 Rough approximation: leakage proportional to area
– Transistors aren’t free, unless they’re turned off

 Controlling leakage
– Power gating (turn off unused blocks)

Drain

Why MulticoreWhy Multicore

Core Core Core
Core

Core

Core

Core

Single Core Dual Core Quad Core

Core area A ~A/2 ~A/4

Core power W ~W/2 ~W/4

Chip power W + O W + O’ W + O’’

Core performance P 0.9P 0.8P

Chip performance P 1.8P 3.2P

ECE/CS 552: Introduction To Computer Architecture 16

Dynamic PowerDynamic Power

 Aka AC power, switching power
 Static CMOS: current flows when transistors turn on/off

AfkCVPdyn
2

– Combinational logic evaluates
– Sequential logic (flip-flop, latch) captures new value (clock edge)

 Terms
– C: capacitance of circuit (wire length, no. & size of transistors)
– V: supply voltage
– A: activity factor
– f: frequency

 Moore’s Law: which terms increase, which decrease?
– Historically voltage scaling has saved us, but not any more

Cache Coherence ProblemCache Coherence Problem

P0 P1
Load A Load A
Store A<= 1 Load A

92

A 0 A 01

Memory

Cache Coherence ProblemCache Coherence Problem

P1 P1
Load A Load A
Store A<= 1 Load A

93

A 0 A 0

Memory

1 A 1

Sample Invalidate Protocol (MESI)Sample Invalidate Protocol (MESI)

M BR

LW

EV or
BW

LW

I

SE

EV or
BW or
BU

LR/SLR/~S

LW

BW

EV or
BW

BR

Multithreaded ProcessorsMultithreaded Processors

MT Approach Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system context
switch

Fine-grained Everything but register file and control logic/state Switch every cycle

Coarse-grained Everything but I-fetch buffers, register file and
con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers, return All contexts concurrently active; no

 Many approaches for executing multiple threads on a
single die
– Mix-and-match: IBM Power7 8-core CMP x 4-way SMT

address stack, architected register file, control
logic/state, reorder buffer, store queue, etc.

switching

CMT Various core components (e.g. FPU), secondary
cache, system interconnect

All contexts concurrently active; no
switching

CMP Secondary cache, system interconnect All contexts concurrently active; no
switching

Niagara Block Diagram Niagara Block Diagram [Source: J. [Source: J. LaudonLaudon]]

 8 in-order cores, 4 threads each
 4 L2 banks, 4 DDR2 memory controllers

ECE/CS 552: Introduction To Computer Architecture 17

SummarySummary
 Why multicore now?
 Thread-level parallelism
 Shared-memory multiprocessors

Coherence

© Hill, Lipasti
97

– Coherence
– Memory ordering
– Split-transaction buses

 Multithreading
 Multicore processors

Midterm ScopeMidterm Scope
 Chapter 3.3-3.5:

– Multiplication, Division, Floating Point
 Chapter 4.10-4.11: Enhancing performance

– Superscalar lecture notes
MIPS R10K reading on course web page

98

– MIPS R10K reading on course web page
 Chapter 5: Memory Hierarchy

– Caches, virtual memory
– SECDED (handout)

 Chapter 6: I/O
 Chapter 5.7-5.9, 7: Multiprocessors

– Lecture notes on power and multicore
– Lecture notes on multithreading

