
ECE/CS 552: Introduction To Computer
Architecture 1

ECE/CS 552: Performance and ECE/CS 552: Performance and
CostCost

Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Performance and CostPerformance and Cost

Airplane Passengers Range (mi) Speed (mph)

B i 737 100 101 630 598

 Which of the following airplanes has the best
performance?

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

 How much faster is the Concorde vs. the 747
 How much bigger is the 747 vs. DC-8?

Performance and Cost Performance and Cost
Which computer is fastest?
Not so simple

– Scientific simulation – FP performance

– Program development – Integer performance

– Database workload – Memory, I/O

Performance of ComputersPerformance of Computers

 Want to buy the fastest computer for what
you want to do?
– Workload is all-important

– Correct measurement and analysis

 Want to design the fastest computer for
what the customer wants to pay?
– Cost is an important criterion

ForecastForecast

 Time and performance
 Iron Law
 MIPS and MFLOPSMIPS and MFLOPS
 Which programs and how to average
 Amdahl’s law

Defining PerformanceDefining Performance

 What is important to whom?
 Computer system user

– Minimize elapsed time for program =Minimize elapsed time for program
time_end – time_start

– Called response time

 Computer center manager
– Maximize completion rate = #jobs/second

– Called throughput

ECE/CS 552: Introduction To Computer
Architecture 2

Response Time vs. ThroughputResponse Time vs. Throughput

 Is throughput = 1/av. response time?
– Only if NO overlap
– Otherwise, throughput > 1/av. response time
– E g a lunch buffet – assume 5 entrees– E.g. a lunch buffet – assume 5 entrees
– Each person takes 2 minutes/entrée
– Throughput is 1 person every 2 minutes
– BUT time to fill up tray is 10 minutes
– Why and what would the throughput be otherwise?

 5 people simultaneously filling tray (overlap)
 Without overlap, throughput = 1/10

What is Performance for us?What is Performance for us?

 For computer architects
– CPU time = time spent running a program

 Intuitively, bigger should be faster, so:y, gg ,
– Performance = 1/X time, where X is response,

CPU execution, etc.

 Elapsed time = CPU time + I/O wait
 We will concentrate on CPU time

Improve PerformanceImprove Performance

 Improve (a) response time or (b)
throughput?
– Faster CPU

 Helps both (a) and (b)

– Add more CPUs
 Helps (b) and perhaps (a) due to less queueing

Performance ComparisonPerformance Comparison

 Machine A is n times faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) = n

 Machine A is x% faster than machine B iff
f(A)/ f(B) i (B)/ i (A) 1 /100– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

 E.g. time(A) = 10s, time(B) = 15s
– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1.5 => A is 50% faster than B

Breaking Down PerformanceBreaking Down Performance

 A program is broken into instructions
– H/W is aware of instructions, not programs

 At lower level, H/W breaks instructions into
lcycles

– Lower level state machines change state every cycle

 For example:
– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle =

1ns

– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

Iron LawIron Law
Processor Performance = ---------------

Time

Program

Instructions Cycles Time= X X

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

ECE/CS 552: Introduction To Computer
Architecture 3

Iron LawIron Law

 Instructions/Program
– Instructions executed, not static code size

– Determined by algorithm, compiler, ISA

l / i Cycles/Instruction
– Determined by ISA and CPU organization

– Overlap among instructions reduces this term

 Time/cycle
– Determined by technology, organization, clever

circuit design

Our GoalOur Goal

 Minimize time which is the product, NOT
isolated terms

 Common error to miss terms while
devising optimizations
– E.g. ISA change to decrease instruction count

– BUT leads to CPU organization which makes
clock slower

 Bottom line: terms are inter-related

Other MetricsOther Metrics

 MIPS and MFLOPS
 MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106) clock rate/(CPI x 10)

 But MIPS has serious shortcomings

Problems with MIPSProblems with MIPS

 E.g. without FP hardware, an FP op may take 50
single-cycle instructions

 With FP hardware, only one 2-cycle instruction

 Thus adding FP hardware: Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program

decreases (why?)
– Total execution time decreases

 BUT, MIPS gets worse!

50/50 => 2/1
50 => 1

50 => 2
50 MIPS => 2 MIPS

Problems with MIPSProblems with MIPS

 Ignores program
 Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!Ideal conditions guaranteed not to exceed!

 When is MIPS ok?
– Same compiler, same ISA

– E.g. same binary running on AMD Phenom,
Intel Core i7

– Why? Instr/program is constant and can be
ignored

Other MetricsOther Metrics

 MFLOPS = FP ops in program/(execution time x 106)

 Assuming FP ops independent of compiler and
ISA
– Often safe for numeric codes: matrix size determinesOften safe for numeric codes: matrix size determines

of FP ops/program
– However, not always safe:

 Missing instructions (e.g. FP divide)
 Optimizing compilers

 Relative MIPS and normalized MFLOPS
– Adds to confusion

ECE/CS 552: Introduction To Computer
Architecture 4

RulesRules

 Use ONLY Time
 Beware when reading, especially if details

are omitted
 Beware of Peak

– “Guaranteed not to exceed”

Iron Law ExampleIron Law Example

 Machine A: clock 1ns, CPI 2.0, for program x
 Machine B: clock 2ns, CPI 1.2, for program x
 Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle

Time(A) = N x 2.0 x 1 = 2N

Time(B) = N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

 So, Machine A is 20% faster than Machine B for
this program

Iron Law ExampleIron Law Example

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what

is CPI(A)?()

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

Iron Law ExampleIron Law Example

 Keep CPI(A)=2.0 and CPI(B)=1.2
 For equal performance, if clock(B)=2ns,

what is clock(A)?()
Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

Which ProgramsWhich Programs

 Execution time of what program?
 Best case – your always run the same set of

programs
P h d i h h l kl d– Port them and time the whole workload

 In reality, use benchmarks
– Programs chosen to measure performance

– Predict performance of actual workload

– Saves effort and money

– Representative? Honest? Benchmarketing…

How to AverageHow to Average
Machine A Machine B

Program 1 1 10

Program 2 1000 100

T l 1001 110

 One answer: for total execution time, how
much faster is B? 9.1x

Total 1001 110

ECE/CS 552: Introduction To Computer
Architecture 5

How to AverageHow to Average

 Another: arithmetic mean (same result)
 Arithmetic mean of times:
 AM(A) = 1001/2 = 500.5 n

itime
n

i

1
)(

1











 AM(B) = 110/2 = 55
 500.5/55 = 9.1x
 Valid only if programs run equally often, so use

weighted arithmetic mean:

i 1 

 
n

itimeiweight
n

i

1
)()(

1













Other AveragesOther Averages

 E.g., 30 mph for first 10 miles, then 90
mph for next 10 miles, what is average
speed?

 Average speed = (30+90)/2 WRONG
 Average speed = total distance / total time

= (20 / (10/30 + 10/90))
= 45 mph

Harmonic MeanHarmonic Mean
 Harmonic mean of rates =

 Use HM if forced to start and end with rates (e.g.
reporting MIPS or MFLOPS)
Wh ?











n

i nrate

n

1)(
1

 Why?
– Rate has time in denominator

– Mean should be proportional to inverse of sums of
time (not sum of inverses)

– See: J.E. Smith, “Characterizing computer
performance with a single number,” CACM Volume
31 , Issue 10 (October 1988), pp. 1202-1206.

Dealing with RatiosDealing with Ratios
Machine A Machine B

Program 1 1 10
Program 2 1000 100
Total 1001 110

 If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10

Program 2 1 0.1

Dealing with RatiosDealing with Ratios
 Average for machine A is 1, average for

machine B is 5.05
 If we take ratios with respect to machine B

Machine A Machine B

 Can’t both be true!!!
 Don’t use arithmetic mean on ratios!

ac e ac e
Program 1 0.1 1
Program 2 10 1
Average 5.05 1

Geometric MeanGeometric Mean

 Use geometric mean for ratios
 Geometric mean of ratios = n

n

i

iratio
1

)(

 Independent of reference machine
 In the example, GM for machine a is 1, for

machine B is also 1
– Normalized with respect to either machine

ECE/CS 552: Introduction To Computer
Architecture 6

But…But…

 GM of ratios is not proportional to total time
 AM in example says machine B is 9.1 times

faster
GM h l GM says they are equal

 If we took total execution time, A and B are
equal only if
– Program 1 is run 100 times more often than program 2

 Generally, GM will mispredict for three or more
machines

SummarySummary

 Use AM for times
 Use HM if forced to use rates
 Use GM if forced to use ratiosUse GM if forced to use ratios

 Best of all, use unnormalized numbers to
compute time

Benchmarks: SPEC2000Benchmarks: SPEC2000

 System Performance Evaluation
Cooperative
– Formed in 80s to combat benchmarketing

– SPEC89, SPEC92, SPEC95, SPEC2000

 12 integer and 14 floating-point programs
– Sun Ultra-5 300MHz reference machine has

score of 100

– Report GM of ratios to reference machine

Benchmarks: SPEC CINT2000Benchmarks: SPEC CINT2000
Benchmark Description

164.gzip Compression

175.vpr FPGA place and route

176.gcc C compiler

181.mcf Combinatorial optimization

186.crafty Chess

197.parser Word processing, grammatical analysis

252.eon Visualization (ray tracing)

253.perlbmk PERL script execution

254.gap Group theory interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator

Benchmarks: SPEC CFP2000Benchmarks: SPEC CFP2000
Benchmark Description

168.wupwise Physics/Quantum Chromodynamics

171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field

173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics libraryg p y

178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack High energy nuclear physics accelerator design

301.apsi Meteorology: Pollutant distribution

Benchmark PitfallsBenchmark Pitfalls

 Benchmark not representative
– Your workload is I/O bound, SPEC is useless

 Benchmark is too old
– Benchmarks age poorly; benchmarketing

pressure causes vendors to optimize
compiler/hardware/software to benchmarks

– Need to be periodically refreshed

ECE/CS 552: Introduction To Computer
Architecture 7

Amdahl’s LawAmdahl’s Law
 Motivation for optimizing common case
 Speedup = old time / new time = new rate / old rate

 Let an optimization speed fraction f of time by a
factor of s

  
  

s
f

f

oldtime
s
f

oldtimef

oldtimeff
Speedup









1

1

1

1

Amdahl’s Law ExampleAmdahl’s Law Example

 Your boss asks you to improve performance by:
– Improve the ALU used 95% of time by 10%

– Improve memory pipeline used 5% of time by 10x

f f i d d d h Let f=fraction sped up and s = speedup on that
fraction
New_time = (1-f) x old_time + (f/s) x old_time

Speedup = old_time / new_time

Speedup = old_time / ((1-f) x old_time + (f/s) x old_time)

 Amdahl’s Law:

s
f

f
Speedup




1

1

Amdahl’s Law Example, cont’dAmdahl’s Law Example, cont’d

f s Speedup

95% 1.10 1.094

5% 10 1.047

5% ∞ 1.052

Amdahl’s Law: LimitAmdahl’s Law: Limit

 Make common case fast: f
s

f
f

s 



 1

1

1

1
lim

8
9

10

0
1
2
3
4
5
6
7
8

0 0.2 0.4 0.6 0.8 1

f

S
p

ee
d

u
p

Amdahl’s Law: LimitAmdahl’s Law: Limit

 Consider uncommon case!
 If (1-f) is nontrivial

– Speedup is limited!

f
s
f

f
s 




 1

1

1

1
lim

 Particularly true for exploiting parallelism in the
large, where large s is not cheap
– GPU with e.g. 1024 processors (shader cores)

– Parallel portion speeds up by s (1024x)

– Serial portion of code (1-f) limits speedup

– E.g. 10% serial limits to 10x speedup!

SummarySummary

 Time and performance: Machine A n times
faster than Machine B
– Iff Time(B)/Time(A) = n

 Iron Law: Performance = Time/program =

Instructions Cycles

Program Instruction
Time
Cycle

(code size)

= X X

(CPI) (cycle time)

ECE/CS 552: Introduction To Computer
Architecture 8

Summary Cont’dSummary Cont’d

 Other Metrics: MIPS and MFLOPS
– Beware of peak and omitted details

 Benchmarks: SPEC2000
 Summarize performance:

– AM for time
– HM for rate
– GM for ratio

 Amdahl’s Law:
s

f
f

Speedup



1

1

