ECE/CS 552: Performance and Cost

Instructor:Mikko H Lipasti
Fall 2010
University of Wisconsin-Madison

Lecture notes partially based on set created by Mark Hill

Performance and Cost

- Which of the following airplanes has the best performance?
Airplane Passengers Range (mi) Speed (mph)

Boeing 737-100	101	630	598
Boeing 747	470	4150	610
BAC/Sud Concorde	132	4000	1350
Douglas DC-8-50	146	8720	544

- How much faster is the Concorde vs. the 747
- How much bigger is the 747 vs. DC-8?

Performance and Cost

- Which computer is fastest?
- Not so simple
- Scientific simulation - FP performance
- Program development - Integer performance
- Database workload - Memory, I/O

Performance of Computers

- Want to buy the fastest computer for what you want to do?
- Workload is all-important
- Correct measurement and analysis
- Want to design the fastest computer for what the customer wants to pay?
- Cost is an important criterion

Forecast

- Time and performance
- Iron Law
- MIPS and MFLOPS
- Which programs and how to average
- Amdahl's law

Defining Performance

- What is important to whom?
- Computer system user
- Minimize elapsed time for program = time_end - time_start
- Called response time
- Computer center manager
- Maximize completion rate = \#jobs/second
- Called throughput

Response Time vs. Throughput

- Is throughput $=1 / \mathrm{av}$. response time?
- Only if NO overlap
- Otherwise, throughput > 1/av. response time
- E.g. a lunch buffet - assume 5 entrees
- Each person takes 2 minutes/entrée
- Throughput is 1 person every 2 minutes
- BUT time to fill up tray is 10 minutes
- Why and what would the throughput be otherwise?
- 5 people simultaneously filling tray (overlap)
- Without overlap, throughput $=1 / 10$

What is Performance for us?

- For computer architects
- CPU time = time spent running a program
- Intuitively, bigger should be faster, so:
- Performance $=1 / \mathrm{X}$ time, where X is response, CPU execution, etc.
- Elapsed time $=$ CPU time + I/O wait
- We will concentrate on CPU time

Improve Performance

- Improve (a) response time or (b) throughput?
- Faster CPU
- Helps both (a) and (b)
- Add more CPUs
- Helps (b) and perhaps (a) due to less queueing

Performance Comparison

- Machine A is n times faster than machine B iff $\operatorname{perf}(\mathrm{A}) / \operatorname{perf}(\mathrm{B})=\operatorname{time}(\mathrm{B}) / \operatorname{time}(\mathrm{A})=\mathrm{n}$
- Machine A is $x \%$ faster than machine B iff $-\operatorname{perf}(\mathrm{A}) / \operatorname{perf}(\mathrm{B})=\operatorname{time}(\mathrm{B}) / \operatorname{time}(\mathrm{A})=1+\mathrm{x} / 100$
- E.g. $\operatorname{time}(A)=10 \mathrm{~s}, \operatorname{time}(B)=15 \mathrm{~s}$
$-15 / 10=1.5 \Rightarrow \mathrm{~A}$ is 1.5 times faster than B
$-15 / 10=1.5 \Rightarrow \mathrm{~A}$ is 50% faster than B

Breaking Down Performance

- A program is broken into instructions
$-\mathrm{H} / \mathrm{W}$ is aware of instructions, not programs
- At lower level, H/W breaks instructions into cycles
- Lower level state machines change state every cycle
- For example:
- 1 GHz Snapdragon runs 1000 M cycles $/ \mathrm{sec}, 1$ cycle $=$ 1 ns
-2.5 GHz Core i 7 runs 2.5 G cycles $/ \mathrm{sec}, 1$ cycle $=0.25 \mathrm{~ns}$

Iron Law

Processor Performance $=\frac{\text { Time }}{----------\quad}$

$=$| $\frac{\text { Instructions }}{\text { Program }} \times \frac{\text { Cycles }}{\text { (code size) }} \times \frac{\text { Time }}{\frac{\text { Instruction }}{\text { Cycle }}}$ |
| :---: |
| (cycle time) |

Architecture --> Implementation --> Realization
Compiler Designer Processor Designer Chip Designer

Iron Law

- Instructions/Program
- Instructions executed, not static code size
- Determined by algorithm, compiler, ISA
- Cycles/Instruction
- Determined by ISA and CPU organization
- Overlap among instructions reduces this term
- Time/cycle
- Determined by technology, organization, clever circuit design

Our Goal

- Minimize time which is the product, NOT isolated terms
- Common error to miss terms while devising optimizations
- E.g. ISA change to decrease instruction count
- BUT leads to CPU organization which makes clock slower
- Bottom line: terms are inter-related

Other Metrics

- MIPS and MFLOPS
- MIPS $=$ instruction count/(execution time $\times 10^{6}$)
$=$ clock rate/(CPI x 10^{6})
- But MIPS has serious shortcomings

Problems with MIPS

- E.g. without FP hardware, an FP op may take 50 single-cycle instructions
- With FP hardware, only one 2-cycle instruction
- Thus, adding FP hardware:
- CPI increases (why?) $\quad 50 / 50=>2 / 1$
- Instructions/program decreases (why?)
- Total execution time decreases
$50=>1$
$50=>2$
- BUT, MIPS gets worse!

50 MIPS $\Rightarrow>2$ MIPS

Problems with MIPS

- Ignores program
- Usually used to quote peak performance
- Ideal conditions => guaranteed not to exceed!
- When is MIPS ok?
- Same compiler, same ISA
- E.g. same binary running on AMD Phenom, Intel Core i7
- Why? Instr/program is constant and can be ignored

Other Metrics

- $\mathrm{MFLOPS}=\mathrm{FP}$ ops in program/(execution time $\times 10^{6}$)
- Assuming FP ops independent of compiler and ISA
- Often safe for numeric codes: matrix size determines \# of FP ops/program
- However, not always safe:
- Missing instructions (e.g. FP divide)
- Optimizing compilers
- Relative MIPS and normalized MFLOPS
- Adds to confusion

Rules

- Use ONLY Time
- Beware when reading, especially if details are omitted
- Beware of Peak
- "Guaranteed not to exceed"

Iron Law Example

- Machine A: clock 1ns, CPI 2.0, for program x
- Machine B: clock 2ns, CPI 1.2, for program x
- Which is faster and how much?

Time/Program $=$ instr/program x cycles/instr x sec/cycle Time $(\mathrm{A})=\mathrm{N} \times 2.0 \times 1=2 \mathrm{~N}$
$\operatorname{Time}(B)=N \times 1.2 \times 2=2.4 \mathrm{~N}$
Compare: Time $(\mathrm{B}) / \operatorname{Time}(\mathrm{A})=2.4 \mathrm{~N} / 2 \mathrm{~N}=1.2$

- So, Machine A is 20% faster than Machine B for this program

Iron Law Example

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if $\mathrm{CPI}(\mathrm{B})=1.2$, what is $\mathrm{CPI}(\mathrm{A})$?
$\operatorname{Time}(\mathrm{B}) / \operatorname{Time}(\mathrm{A})=1=(\mathrm{Nx} 2 \times 1.2) /(\mathrm{Nx} 1 \mathrm{xCPI}(\mathrm{A}))$ $\operatorname{CPI}(\mathrm{A})=2.4$

Iron Law Example

- Keep $\operatorname{CPI}(\mathrm{A})=2.0$ and $\operatorname{CPI}(\mathrm{B})=1.2$
- For equal performance, if $\operatorname{clock}(B)=2 n s$, what is $\operatorname{clock}(\mathrm{A})$?
$\operatorname{Time}(\mathrm{B}) / \operatorname{Time}(\mathrm{A})=1=(\mathrm{N} \times 2.0 \times \operatorname{clock}(\mathrm{A})) /(\mathrm{N} \times 1.2 \times 2)$ $\operatorname{clock}(\mathrm{A})=1.2 \mathrm{~ns}$

Which Programs

- Execution time of what program?
- Best case - your always run the same set of programs
- Port them and time the whole workload
- In reality, use benchmarks
- Programs chosen to measure performance
- Predict performance of actual workload
- Saves effort and money
- Representative? Honest? Benchmarketing...

How to Average

	Machine A	Machine B
Program 1	1	10
Program 2	1000	100
Total	1001	110

- One answer: for total execution time, how much faster is B ? 9.1 x

How to Average

- Another: arithmetic mean (same result)
- Arithmetic mean of times:
- $\mathrm{AM}(\mathrm{A})=1001 / 2=500.5$

- $\operatorname{AM}(\mathrm{B})=110 / 2=55$
- $500.5 / 55=9.1 \mathrm{x}$
- Valid only if programs run equally often, so use weighted arithmetic mean:

$$
\left\{\sum_{i=1}^{n}(\text { weight }(i) \times \operatorname{time}(i))\right\} \times \frac{1}{n}
$$

Harmonic Mean

- Harmonic mean of rates =

- Use HM if forced to start and end with rates (e.g. reporting MIPS or MFLOPS)
- Why?
- Rate has time in denominator
- Mean should be proportional to inverse of sums of time (not sum of inverses)
- See: J.E. Smith, "Characterizing computer performance with a single number," CACM Volume 31, Issue 10 (October 1988), pp. 1202-1206.

Dealing with Ratios

- Average for machine A is 1 , average for machine B is 5.05
- If we take ratios with respect to machine B

	Machine A	Machine B
Program 1	0.1	1
Program 2	10	1
Average	5.05	1

- Can't both be true!!!
- Don't use arithmetic mean on ratios!

Other Averages

- E.g., 30 mph for first 10 miles, then 90 mph for next 10 miles, what is average speed?
- Average speed $=(30+90) / 2$ WRONG
- Average speed $=$ total distance $/$ total time
$=(20 /(10 / 30+10 / 90))$
$=45 \mathrm{mph}$

Dealing with Ratios

	Machine A	Machine B
Program 1	1	10
Program 2	1000	100
Total	1001	110

- If we take ratios with respect to machine A

	Machine A	Machine B
Program 1	1	10
Program 2	1	0.1

Geometric Mean

- Use geometric mean for ratios
- Geometric mean of ratios =

- Independent of reference machine
- In the example, GM for machine a is 1 , for machine B is also 1
- Normalized with respect to either machine

But...

- GM of ratios is not proportional to total time
- AM in example says machine B is 9.1 times faster
- GM says they are equal
- If we took total execution time, A and B are equal only if
- Program 1 is run 100 times more often than program 2
- Generally, GM will mispredict for three or more machines

Summary

- Use AM for times
- Use HM if forced to use rates
- Use GM if forced to use ratios
- Best of all, use unnormalized numbers to compute time

Benchmarks: SPEC2000

- System Performance Evaluation Cooperative
- Formed in 80s to combat benchmarketing
- SPEC89, SPEC92, SPEC95, SPEC2000
- 12 integer and 14 floating-point programs
- Sun Ultra-5 300MHz reference machine has score of 100
- Report GM of ratios to reference machine

Benchmarks: SPEC CINT2000

Benchmark	Description
164.gzip	Compression
175.vpr	FPGA place and route
176.gcc	C compiler
181.mcf	Combinatorial optimization
186.crafty	Chess
197.parser	Word processing, grammatical analysis
252.eon	Visualization (ray tracing)
253.perlbmk	PERL script execution
254.gap	Group theory interpreter
255.vortex	Object-oriented database
256.bzip2	Compression
300.twolf	Place and route simulator

Benchmark Pitfalls

- Benchmark not representative
- Your workload is I/O bound, SPEC is useless
- Benchmark is too old
- Benchmarks age poorly; benchmarketing pressure causes vendors to optimize compiler/hardware/software to benchmarks
- Need to be periodically refreshed

Amdahl's Law

- Motivation for optimizing common case
- Speedup $=$ old time $/$ new time $=$ new rate $/$ old rate
- Let an optimization speed fraction f of time by a factor of s

$$
\begin{aligned}
\text { Speedup } & =\frac{[(1-f)+f] \times \text { oldtime }}{[(1-f) \times \text { oldtime }]+\frac{f}{s} \times \text { oldtime }} \\
& =\frac{1}{1-f+\frac{f}{s}}
\end{aligned}
$$

Amdahl's Law Example

- Your boss asks you to improve performance by:
- Improve the ALU used 95% of time by 10%
- Improve memory pipeline used 5% of time by 10 x
- Let $\mathrm{f}=\mathrm{fraction}$ sped up and $\mathrm{s}=$ speedup on that fraction
New_time $=(1-f) x$ old_time $+(f / s) x$ old_time
Speedup $=$ old_time $/$ new_time
Speedup $=$ old_time $/((1-\mathrm{f}) \mathrm{x}$ old_time $+(\mathrm{f} / \mathrm{s}) \mathrm{x}$ old_time $)$
- Amdahl's Law: Speedup $=\frac{1}{1-f+\frac{f}{s}}$

Amdahl's Law Example, cont'd

f	s	Speedup
95%	1.10	1.094
5%	10	1.047
5%	∞	1.052

Amdahl's Law: Limit

- Make common case fast:

Amdahl's Law: Limit

- Consider uncommon case!
- If (1-f) is nontrivial
- Speedup is limited!

- Particularly true for exploiting parallelism in the large, where large s is not cheap
- GPU with e.g. 1024 processors (shader cores)
- Parallel portion speeds up by s (1024x)
- Serial portion of code (1-f) limits speedup
- E.g. 10% serial limits to $10 x$ speedup!

Summary

- Time and performance: Machine A n times faster than Machine B
- Iff Time (B)/Time (A) $=\mathrm{n}$
- Iron Law: Performance $=$ Time/program $=$

Summary Cont'd

- Other Metrics: MIPS and MFLOPS
- Beware of peak and omitted details
- Benchmarks: SPEC2000
- Summarize performance:
- AM for time
- HM for rate - GM for ratio
- Amdahl's Law:

