
ECE/CS 552: Introduction To Computer
Architecture 1

ECE/CS 552: Performance and ECE/CS 552: Performance and
CostCost

Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Performance and CostPerformance and Cost

Airplane Passengers Range (mi) Speed (mph)

B i 737 100 101 630 598

 Which of the following airplanes has the best
performance?

Boeing 737-100 101 630 598
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 544

 How much faster is the Concorde vs. the 747
 How much bigger is the 747 vs. DC-8?

Performance and Cost Performance and Cost
Which computer is fastest?
Not so simple

– Scientific simulation – FP performance

– Program development – Integer performance

– Database workload – Memory, I/O

Performance of ComputersPerformance of Computers

 Want to buy the fastest computer for what
you want to do?
– Workload is all-important

– Correct measurement and analysis

 Want to design the fastest computer for
what the customer wants to pay?
– Cost is an important criterion

ForecastForecast

 Time and performance
 Iron Law
 MIPS and MFLOPSMIPS and MFLOPS
 Which programs and how to average
 Amdahl’s law

Defining PerformanceDefining Performance

 What is important to whom?
 Computer system user

– Minimize elapsed time for program =Minimize elapsed time for program
time_end – time_start

– Called response time

 Computer center manager
– Maximize completion rate = #jobs/second

– Called throughput

ECE/CS 552: Introduction To Computer
Architecture 2

Response Time vs. ThroughputResponse Time vs. Throughput

 Is throughput = 1/av. response time?
– Only if NO overlap
– Otherwise, throughput > 1/av. response time
– E g a lunch buffet – assume 5 entrees– E.g. a lunch buffet – assume 5 entrees
– Each person takes 2 minutes/entrée
– Throughput is 1 person every 2 minutes
– BUT time to fill up tray is 10 minutes
– Why and what would the throughput be otherwise?

 5 people simultaneously filling tray (overlap)
 Without overlap, throughput = 1/10

What is Performance for us?What is Performance for us?

 For computer architects
– CPU time = time spent running a program

 Intuitively, bigger should be faster, so:y, gg ,
– Performance = 1/X time, where X is response,

CPU execution, etc.

 Elapsed time = CPU time + I/O wait
 We will concentrate on CPU time

Improve PerformanceImprove Performance

 Improve (a) response time or (b)
throughput?
– Faster CPU

 Helps both (a) and (b)

– Add more CPUs
 Helps (b) and perhaps (a) due to less queueing

Performance ComparisonPerformance Comparison

 Machine A is n times faster than machine B iff
perf(A)/perf(B) = time(B)/time(A) = n

 Machine A is x% faster than machine B iff
f(A)/ f(B) i (B)/ i (A) 1 /100– perf(A)/perf(B) = time(B)/time(A) = 1 + x/100

 E.g. time(A) = 10s, time(B) = 15s
– 15/10 = 1.5 => A is 1.5 times faster than B

– 15/10 = 1.5 => A is 50% faster than B

Breaking Down PerformanceBreaking Down Performance

 A program is broken into instructions
– H/W is aware of instructions, not programs

 At lower level, H/W breaks instructions into
lcycles

– Lower level state machines change state every cycle

 For example:
– 1GHz Snapdragon runs 1000M cycles/sec, 1 cycle =

1ns

– 2.5GHz Core i7 runs 2.5G cycles/sec, 1 cycle = 0.25ns

Iron LawIron Law
Processor Performance = ---------------

Time

Program

Instructions Cycles Time= X X

Architecture --> Implementation --> Realization

Compiler Designer Processor Designer Chip Designer

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

ECE/CS 552: Introduction To Computer
Architecture 3

Iron LawIron Law

 Instructions/Program
– Instructions executed, not static code size

– Determined by algorithm, compiler, ISA

l / i Cycles/Instruction
– Determined by ISA and CPU organization

– Overlap among instructions reduces this term

 Time/cycle
– Determined by technology, organization, clever

circuit design

Our GoalOur Goal

 Minimize time which is the product, NOT
isolated terms

 Common error to miss terms while
devising optimizations
– E.g. ISA change to decrease instruction count

– BUT leads to CPU organization which makes
clock slower

 Bottom line: terms are inter-related

Other MetricsOther Metrics

 MIPS and MFLOPS
 MIPS = instruction count/(execution time x 106)

= clock rate/(CPI x 106) clock rate/(CPI x 10)

 But MIPS has serious shortcomings

Problems with MIPSProblems with MIPS

 E.g. without FP hardware, an FP op may take 50
single-cycle instructions

 With FP hardware, only one 2-cycle instruction

 Thus adding FP hardware: Thus, adding FP hardware:
– CPI increases (why?)
– Instructions/program

decreases (why?)
– Total execution time decreases

 BUT, MIPS gets worse!

50/50 => 2/1
50 => 1

50 => 2
50 MIPS => 2 MIPS

Problems with MIPSProblems with MIPS

 Ignores program
 Usually used to quote peak performance

– Ideal conditions => guaranteed not to exceed!Ideal conditions guaranteed not to exceed!

 When is MIPS ok?
– Same compiler, same ISA

– E.g. same binary running on AMD Phenom,
Intel Core i7

– Why? Instr/program is constant and can be
ignored

Other MetricsOther Metrics

 MFLOPS = FP ops in program/(execution time x 106)

 Assuming FP ops independent of compiler and
ISA
– Often safe for numeric codes: matrix size determinesOften safe for numeric codes: matrix size determines

of FP ops/program
– However, not always safe:

 Missing instructions (e.g. FP divide)
 Optimizing compilers

 Relative MIPS and normalized MFLOPS
– Adds to confusion

ECE/CS 552: Introduction To Computer
Architecture 4

RulesRules

 Use ONLY Time
 Beware when reading, especially if details

are omitted
 Beware of Peak

– “Guaranteed not to exceed”

Iron Law ExampleIron Law Example

 Machine A: clock 1ns, CPI 2.0, for program x
 Machine B: clock 2ns, CPI 1.2, for program x
 Which is faster and how much?

Time/Program = instr/program x cycles/instr x sec/cycle

Time(A) = N x 2.0 x 1 = 2N

Time(B) = N x 1.2 x 2 = 2.4N

Compare: Time(B)/Time(A) = 2.4N/2N = 1.2

 So, Machine A is 20% faster than Machine B for
this program

Iron Law ExampleIron Law Example

Keep clock(A) @ 1ns and clock(B) @2ns
For equal performance, if CPI(B)=1.2, what

is CPI(A)?()

Time(B)/Time(A) = 1 = (Nx2x1.2)/(Nx1xCPI(A))
CPI(A) = 2.4

Iron Law ExampleIron Law Example

 Keep CPI(A)=2.0 and CPI(B)=1.2
 For equal performance, if clock(B)=2ns,

what is clock(A)?()
Time(B)/Time(A) = 1 = (N x 2.0 x clock(A))/(N x 1.2 x 2)
clock(A) = 1.2ns

Which ProgramsWhich Programs

 Execution time of what program?
 Best case – your always run the same set of

programs
P h d i h h l kl d– Port them and time the whole workload

 In reality, use benchmarks
– Programs chosen to measure performance

– Predict performance of actual workload

– Saves effort and money

– Representative? Honest? Benchmarketing…

How to AverageHow to Average
Machine A Machine B

Program 1 1 10

Program 2 1000 100

T l 1001 110

 One answer: for total execution time, how
much faster is B? 9.1x

Total 1001 110

ECE/CS 552: Introduction To Computer
Architecture 5

How to AverageHow to Average

 Another: arithmetic mean (same result)
 Arithmetic mean of times:
 AM(A) = 1001/2 = 500.5 n

itime
n

i

1
)(

1

 AM(B) = 110/2 = 55
 500.5/55 = 9.1x
 Valid only if programs run equally often, so use

weighted arithmetic mean:

i 1

n

itimeiweight
n

i

1
)()(

1

Other AveragesOther Averages

 E.g., 30 mph for first 10 miles, then 90
mph for next 10 miles, what is average
speed?

 Average speed = (30+90)/2 WRONG
 Average speed = total distance / total time

= (20 / (10/30 + 10/90))
= 45 mph

Harmonic MeanHarmonic Mean
 Harmonic mean of rates =

 Use HM if forced to start and end with rates (e.g.
reporting MIPS or MFLOPS)
Wh ?

n

i nrate

n

1)(
1

 Why?
– Rate has time in denominator

– Mean should be proportional to inverse of sums of
time (not sum of inverses)

– See: J.E. Smith, “Characterizing computer
performance with a single number,” CACM Volume
31 , Issue 10 (October 1988), pp. 1202-1206.

Dealing with RatiosDealing with Ratios
Machine A Machine B

Program 1 1 10
Program 2 1000 100
Total 1001 110

 If we take ratios with respect to machine A

Machine A Machine B
Program 1 1 10

Program 2 1 0.1

Dealing with RatiosDealing with Ratios
 Average for machine A is 1, average for

machine B is 5.05
 If we take ratios with respect to machine B

Machine A Machine B

 Can’t both be true!!!
 Don’t use arithmetic mean on ratios!

ac e ac e
Program 1 0.1 1
Program 2 10 1
Average 5.05 1

Geometric MeanGeometric Mean

 Use geometric mean for ratios
 Geometric mean of ratios = n

n

i

iratio
1

)(

 Independent of reference machine
 In the example, GM for machine a is 1, for

machine B is also 1
– Normalized with respect to either machine

ECE/CS 552: Introduction To Computer
Architecture 6

But…But…

 GM of ratios is not proportional to total time
 AM in example says machine B is 9.1 times

faster
GM h l GM says they are equal

 If we took total execution time, A and B are
equal only if
– Program 1 is run 100 times more often than program 2

 Generally, GM will mispredict for three or more
machines

SummarySummary

 Use AM for times
 Use HM if forced to use rates
 Use GM if forced to use ratiosUse GM if forced to use ratios

 Best of all, use unnormalized numbers to
compute time

Benchmarks: SPEC2000Benchmarks: SPEC2000

 System Performance Evaluation
Cooperative
– Formed in 80s to combat benchmarketing

– SPEC89, SPEC92, SPEC95, SPEC2000

 12 integer and 14 floating-point programs
– Sun Ultra-5 300MHz reference machine has

score of 100

– Report GM of ratios to reference machine

Benchmarks: SPEC CINT2000Benchmarks: SPEC CINT2000
Benchmark Description

164.gzip Compression

175.vpr FPGA place and route

176.gcc C compiler

181.mcf Combinatorial optimization

186.crafty Chess

197.parser Word processing, grammatical analysis

252.eon Visualization (ray tracing)

253.perlbmk PERL script execution

254.gap Group theory interpreter

255.vortex Object-oriented database

256.bzip2 Compression

300.twolf Place and route simulator

Benchmarks: SPEC CFP2000Benchmarks: SPEC CFP2000
Benchmark Description

168.wupwise Physics/Quantum Chromodynamics

171.swim Shallow water modeling

172.mgrid Multi-grid solver: 3D potential field

173.applu Parabolic/elliptic PDE

177.mesa 3-D graphics libraryg p y

178.galgel Computational Fluid Dynamics

179.art Image Recognition/Neural Networks

183.equake Seismic Wave Propagation Simulation

187.facerec Image processing: face recognition

188.ammp Computational chemistry

189.lucas Number theory/primality testing

191.fma3d Finite-element Crash Simulation

200.sixtrack High energy nuclear physics accelerator design

301.apsi Meteorology: Pollutant distribution

Benchmark PitfallsBenchmark Pitfalls

 Benchmark not representative
– Your workload is I/O bound, SPEC is useless

 Benchmark is too old
– Benchmarks age poorly; benchmarketing

pressure causes vendors to optimize
compiler/hardware/software to benchmarks

– Need to be periodically refreshed

ECE/CS 552: Introduction To Computer
Architecture 7

Amdahl’s LawAmdahl’s Law
 Motivation for optimizing common case
 Speedup = old time / new time = new rate / old rate

 Let an optimization speed fraction f of time by a
factor of s

s
f

f

oldtime
s
f

oldtimef

oldtimeff
Speedup

1

1

1

1

Amdahl’s Law ExampleAmdahl’s Law Example

 Your boss asks you to improve performance by:
– Improve the ALU used 95% of time by 10%

– Improve memory pipeline used 5% of time by 10x

f f i d d d h Let f=fraction sped up and s = speedup on that
fraction
New_time = (1-f) x old_time + (f/s) x old_time

Speedup = old_time / new_time

Speedup = old_time / ((1-f) x old_time + (f/s) x old_time)

 Amdahl’s Law:

s
f

f
Speedup

1

1

Amdahl’s Law Example, cont’dAmdahl’s Law Example, cont’d

f s Speedup

95% 1.10 1.094

5% 10 1.047

5% ∞ 1.052

Amdahl’s Law: LimitAmdahl’s Law: Limit

 Make common case fast: f
s

f
f

s

 1

1

1

1
lim

8
9

10

0
1
2
3
4
5
6
7
8

0 0.2 0.4 0.6 0.8 1

f

S
p

ee
d

u
p

Amdahl’s Law: LimitAmdahl’s Law: Limit

 Consider uncommon case!
 If (1-f) is nontrivial

– Speedup is limited!

f
s
f

f
s

 1

1

1

1
lim

 Particularly true for exploiting parallelism in the
large, where large s is not cheap
– GPU with e.g. 1024 processors (shader cores)

– Parallel portion speeds up by s (1024x)

– Serial portion of code (1-f) limits speedup

– E.g. 10% serial limits to 10x speedup!

SummarySummary

 Time and performance: Machine A n times
faster than Machine B
– Iff Time(B)/Time(A) = n

 Iron Law: Performance = Time/program =

Instructions Cycles

Program Instruction
Time
Cycle

(code size)

= X X

(CPI) (cycle time)

ECE/CS 552: Introduction To Computer
Architecture 8

Summary Cont’dSummary Cont’d

 Other Metrics: MIPS and MFLOPS
– Beware of peak and omitted details

 Benchmarks: SPEC2000
 Summarize performance:

– AM for time
– HM for rate
– GM for ratio

 Amdahl’s Law:
s

f
f

Speedup

1

1

