
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Arithmetic IECE/CS 552: Arithmetic I
Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Basic Arithmetic and the ALUBasic Arithmetic and the ALU
 Number representations: 2’s complement,

unsigned
 Addition/Subtraction
 Add/Sub ALU
 Full adder, ripple carry, subtraction

 Carry-lookahead addition
 Logical operations
 and, or, xor, nor, shifts

 Overflow

Basic Arithmetic and the ALUBasic Arithmetic and the ALU

 Covered later in the semester:
– Integer multiplication, division

– Floating point arithmeticg p

 These are not crucial for the project

BackgroundBackground

 Recall
– n bits enables 2n unique combinations

 Notation: b31 b30 … b3 b2 b1 b031 30 3 2 1 0

 No inherent meaning
– f(b31…b0) => integer value

– f(b31…b0) => control signals

BackgroundBackground

 32-bit types include
– Unsigned integers

– Signed integersg g

– Single-precision floating point

– MIPS instructions (book inside cover)

Unsigned IntegersUnsigned Integers

 f(b31…b0) = b31 x 231 + … + b1 x 21 + b0 x 20

 Treat as normal binary number
E.g. 0…01101010101

= 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 21 + 1 x 20

= 128 + 64 + 16 + 4 + 1 = 213

 Max f(111…11) = 232 – 1 = 4,294,967,295
 Min f(000…00) = 0
 Range [0,232-1] => # values (232-1) – 0 + 1 = 232

ECE/CS 552: Introduction To Computer Architecture 2

Signed IntegersSigned Integers

 2’s complement
f(b31…b0) = -b31 x 231 + … b1 x 21 + b0 x 20

 Max f(0111…11) = 231 – 1 = 2147483647()
 Min f(100…00) = -231 = -2147483648

(asymmetric)
 Range[-231,231-1] => # values(231-1 - -231) = 232

 Invert bits and add one: e.g. –6
– 000…0110 => 111…1001 + 1 => 111…1010

Why 2’s ComplementWhy 2’s Complement

 Why not use sign-magnitude?
 2’s complement makes hardware simpler
 Just like humans don’t work with Roman

numeralsnumerals
 Representation affects ease of calculation, not

correctness of answer
000

001

010

011
100

101

110

111 0 1

2

3-4
-3
-2
-1

000
001

010

011
100

101

110

111 0 1

2

3-0
-1
-2
-3

Addition and SubtractionAddition and Subtraction

 4-bit unsigned example

0 0 1 1 3

1 0 1 0 10

 4-bit 2’s complement – ignoring overflow

1 0 1 0 10

1 1 0 1 13

0 0 1 1 3

1 0 1 0 -6

1 1 0 1 -3

SubtractionSubtraction

 A – B = A + 2’s complement of B
 E.g. 3 – 2

0 0 1 1 3

1 1 1 0 -2

0 0 0 1 1

Full AdderFull Adder
 Full adder (a,b,cin) => (cout, s)
 cout = two or more of (a, b, cin)
 s = exactly one or three of (a,b,cin)

a b cin cout s

0 0 0 0 00 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

RippleRipple--carry Addercarry Adder
 Just concatenate the full adders

Full
Add

Full
Add

Full
Add

Full
Add

cin

Cer

a0 b0

er

a2 b2

er

a1 b1

er

a31b31

Cout

ECE/CS 552: Introduction To Computer Architecture 3

RippleRipple--carry Subtractorcarry Subtractor
 A – B = A + (-B) => invert B and set cin to 1

Full
Add Cout

1

Full
Add

Full
Add

Full
Add

er

a0 b0

1 er

a1 b1

er

a2 b2

er

a3 b3

Combined RippleCombined Ripple--carry carry
Adder/SubtractorAdder/Subtractor
 Control = 1 => subtract
 XOR B with control and set cin0 to control

Full Full Full FullFull
Add
er

a0
b0

Full
Add
er

a1
b1

Full
Add
er

a2
b2

Full
Add
er

a31
b31

operation

Cout

Carry LookaheadCarry Lookahead

 The above ALU is too slow
– Gate delays for add = 32 x FA + XOR ~= 64

 Theoretically, in parallel
– Sum0 = f(cin, a0, b0)
– Sumi = f(cin, ai…a0,, bi…b0)
– Sum31 = f(cin, a31…a0, b31…b0)

 Any boolean function in two levels, right?
– Wrong! Too much fan-in!

Carry LookaheadCarry Lookahead

 Need compromise
– Build tree so delay is O(log2 n) for n bits

– E.g. 2 x 5 gate delays for 32 bitsg g y

 We will consider basic concept with
– 4 bits

– 16 bits

 Warning: a little convoluted

Carry LookaheadCarry Lookahead

0101 0100
0011 0110
Need both 1 to generate carry and at least one to

propagate carrypropagate carry
Define: gi = ai * bi ## carry generate

pi = ai + bi ## carry propagate
Recall: ci+1 = ai * bi + ai * ci + bi * ci

= ai * bi + (ai + bi) * ci

= gi + pi * ci

Carry LookaheadCarry Lookahead
 Therefore

c1 = g0 + p0 * c0

c2 = g1 + p1 * c1 = g1 + p1 * (g0 + p0 * c0)

= g1 + p1 * g0 + p1 * p0 * c0

c3 = g2 + p2 * g1 + p2 * p1 * g0 + p2 * p1 * p0 * c0

c4 = g3 + p3*g2 + p3*p2*g1 + p3*p2*p1*g0 + p3*p2*p1*p0*c0

 Uses one level to form pi and gi, two levels
for carry

 But, this needs n+1 fanin at the OR and the
rightmost AND

ECE/CS 552: Introduction To Computer Architecture 4

44--bit Carry Lookahead Adderbit Carry Lookahead Adder

p3g3 a3b3 p2g2 a2b2 p1g1 a1b1 p0g0 a0b0

Carry Lookahead Block
c0

c4

p3 g3 a3 b3

s3

c3

p2 g2 a2 b2

s2

c2

p1 g1 a1 b1

s1

c1

p0 g0 a0 b0

s0

c0

Hierarchical Carry Lookahead Hierarchical Carry Lookahead
for 16 bitsfor 16 bits

Carry Lookahead Block
c0

c15

PG a,b12-15

s12-15

c12

PG a,b8-11

s8-11

c8

PG a4-7b4-7

s4-7

c4

PG a0-3b0-3

s0-3

c0

Hierarchical CLA for 16 bitsHierarchical CLA for 16 bits
Build 16-bit adder from four 4-bit adders
Figure out G and P for 4 bits together

G0,3 = g3 + p3 * g2 + p3 * p2 * g1 + p3 * p2 * p1 * g0

P0 3 = p3 * p2 * p1 * p0 (Notation a little different from the book)P0,3 p3 p2 p1 p0 (Notation a little different from the book)

G4,7 = g7 + p7 * g6 + p7 * p6 * g5 + p7 * p6 * p5 * g4

P4,7 = p7 * p6* p5 * p4

G12,15 = g15 + p15 * g14 + p15* p14 * g13 + p15 * p14 * p13 * g12

P12,15 = p15 * p14 * p13 * p12

Carry Lookahead BasicsCarry Lookahead Basics

Fill in the holes in the G’s and P’s

Gi, k = Gj+1,k + Pj+1, k * Gi,j (assume i < j +1 < k)

P P * PPi,k = Pi,j * Pj+1, k

G0,7 = G4,7 + P4,7 * G0,3 P0,7 = P0,3* P4,7

G8,15 = G12,15 + P12,15 * G8,11 P8,15 = P8,11 * P12, 15

G0,15 = G8,15 + P8,15 * G0,7 P0,15 = P0,7 * P8, 15

CLA: Compute G’s and P’sCLA: Compute G’s and P’s
G12,15

P12,15

G8,11

P8,11

G4,7

P4,7

G0,3

P0,3

G0,7

P0,7

G8,15

P8,15

G0,15

P0,15

CLA: Compute CarriesCLA: Compute Carries

G0 3G8 11

c8c12

g12 - g15

p12 - p15

c4 c0

g8 - g11

p8 - p11

g4 - g7

p4 - p7

g0 - g3

p0 - p3

G0,3

P0,3

G8,11

P8,11

G0,7

P0,7

c8 c0

c0

ECE/CS 552: Introduction To Computer Architecture 5

Other Adders: Carry SelectOther Adders: Carry Select
 Two adds in parallel; with and without cin

– When Cin is done, select correct result

0
c0

Full Adder
Full Adder

1

2-1 Mux

Full Adder

select

next
select

Other Adders: Carry SaveOther Adders: Carry Save
A + B => S
Save carries A + B => S, Cout

Use Cin A + B + C => S1, S2 (3# to 2# in parallel)
Used in combinational multipliers by building a

Wallace TreeWallace Tree

c b a

c s

CSA

Adding Up Many BitsAdding Up Many Bits

CSA CSA

abcdef

CSA

CSA
S0

S1S2

Logical OperationsLogical Operations

 Bitwise AND, OR, XOR, NOR
– Implement w/ 32 gates in parallel

 Shifts and rotates
– rol => rotate left (MSB->LSB)

– ror => rotate right (LSB->MSB)

– sll -> shift left logical (0->LSB)

– srl -> shift right logical (0->LSB)

– sra -> shift right arithmetic (old MSB->new MSB)

ShifterShifter

shamt0

d0 0d7 d6

shift based on 0th bit by 0 or 1

s0 s00

stage0

0 s0 00 0

s07 s00

d1 d0

Mux

shamt1

s00 s02s07

shift based on 1st bit by 0 or 2

shamt2

s10 0s17 s13

shift based on 2nd bit by 0 or 4

stage1

dout

s06 s00 0s01 0

s14 s10 s13 0

s17 s10

dout7 dout7

Mux

Mux

ShifterShifter

E.g., Shift left logical for d<7:0> and shamt<2:0>

Using 2-1 Muxes called Mux(select, in0, in1)

stage0<7:0> = Mux(shamt<0> d<7:0> 0 || d<7:1>)stage0<7:0> = Mux(shamt<0>,d<7:0>, 0 || d<7:1>)

stage1<7:0> = Mux(shamt<1>, stage0<7:0>, 00 || stage0<6:2>)

dout<7:0) = Mux(shamt<2>, stage1<7:0>, 0000 || stage1<3:0>)

For Barrel shifter used wider muxes

ECE/CS 552: Introduction To Computer Architecture 6

All TogetherAll Together

operation
carryininvert

a

Add

result

b

M
ux

M
ux

OverflowOverflow

 With n bits only 2n combinations
 Unsigned [0, 2n-1], 2’s complement [-2n-1,

2n-1-1]
 Unsigned Add

5 + 6 > 7: 101 + 110 => 1011
f(3:0) = a(2:0) + b(2:0) => overflow = f(3)
Carryout from MSB

OverflowOverflow

 More involved for 2’s complement
-1 + -1 = -2:
111 + 111 = 1110111 111 1110
110 = -2 is correct
 Can’t just use carry-out to signal overflow

Addition OverflowAddition Overflow

 When is overflow NOT possible?
(p1, p2) > 0 and (n1, n2) < 0

p1 + p2p p

p1 + n1 not possible

n1 + p2 not possible

n1 + n2

 Just checking signs of inputs is not
sufficient

Addition OverflowAddition Overflow

 2 + 3 = 5 > 4: 010 + 011 = 101 =? –3 < 0
– Sum of two positive numbers should not be

negative
C l d fl Conclude: overflow

 -1 + -4: 111 + 100 = 011 > 0
– Sum of two negative numbers should not be

positive
 Conclude: overflow

Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

Subtraction OverflowSubtraction Overflow

 No overflow on a-b if signs are the same
 Neg – pos => neg ;; overflow otherwise
 Pos – neg => pos ;; overflow otherwisePos neg pos ;; overflow otherwise
Overflow = f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

ECE/CS 552: Introduction To Computer Architecture 7

What to do on Overflow?What to do on Overflow?

 Ignore ! (C language semantics)
– What about Java? (try/catch?)

 Flag – condition codeg
 Sticky flag – e.g. for floating point

– Otherwise gets in the way of fast hardware

 Trap – possibly maskable
– MIPS has e.g. add that traps, addu that does

not

Zero and NegativeZero and Negative

 Zero = ~[f(2) + f(1) + f(0)]
 Negative = f(2) (sign bit)

Zero and NegativeZero and Negative

 May also want correct answer even on
overflow

 Negative = (a < b) = (a – b) < 0 even if g () ()
overflow

 E.g. is –4 < 2?
100 – 010 = 1010 (-4 – 2 = -6): Overflow!

 Work it out: negative = f(2) XOR overflow

SummarySummary

 Binary representations, signed/unsigned
 Arithmetic

– Full adder, ripple-carry, carry lookahead
– Carry-select, Carry-save
– Overflow, negative
– More (multiply/divide/FP) later

 Logical
– Shift, and, or

