ECE/CS 552: Arithmetic |
Instructor:Mikko H Lipasti

Fall 2010

University of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Basic Arithmetic and the ALU

o Number representations: 2’s complement,
unsigned

e Addition/Subtraction
e Add/Sub ALU
e Full adder, ripple carry, subtraction
e Carry-lookahead addition
e Logical operations
e and, or, xor, nor, shifts

o Overflow
Basic Arithmetic and the ALU Background
e Covered later in the semester: e Recall

— Integer multiplication, division
— Floating point arithmetic
e These are not crucial for the project

— n bits enables 2" unique combinations
e Notation: b, by, ... by b, b, b,
e No inherent meaning

— f(bs;...by) => integer value

— f(b;...by) => control signals

Background

e 32-bit types include
— Unsigned integers
— Signed integers
— Single-precision floating point
— MIPS instructions (book inside cover)

Unsigned Integers

o f(bg;...bg) =bgy x 281 + ... + b; x 21 + by x 20

e Treat as normal binary number
E.g.0...01101010101
=1x27+1x20+0Xx25+1x24+1x22+0x28+1x2°
=128+64+16+4+1=213

e Max f(111...11) = 2321 = 4,294,967,295

e Min f(000...00) =0

e Range [0,2%2-1] => # values (2%2-1) - 0 + 1 = 2%

ECE/CS 552: Introduction To Computer Architecture

Signed Integers

e 2’s complement
f(Dgy...bg) = by x 231+ ... by x 21 + by x 20

e Max f(0111...11) = 231 -1 = 2147483647

e Min f(100...00) = -231 = -2147483648
(asymmetric)

o Range[-2%1,231-1] => # values(2%!-1 - -231) = 2%

e Invert bits and add one: e.g. -6
-000...0110=>111...1001 + 1 => 111...1010

Why 2’s Complement

e Why not use sign-magnitude?

e 2’s complement makes hardware simpler

e Just like humans don’t work with Roman
numerals

e Representation affects ease of calculation, not
correctness of answer 000

111 000 001 111 001
110 010 110 % 010
101 011 101 011
100 100

Addition and Subtraction

e 4-bit unsigned example
0] 0 1| 1 3
1| 0] 1] O 10

Subtraction

o A—-B=A+2’scomplement of B
eEg.3-2

o Full adder (a,b,c;,) => (Cour S)
® ., = two or more of (a, b, ¢;;)
e s =exactly one or three of (a,b,c;;)

a b Ciy Cout s

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1
e e B A o S
1 0 0 0 1
N
e e e T e T T
‘¥ 4 1 £ ¢

1l 1| of 1 13 0| 0] 1] 1 8
e 4-bit 2’s complement — ignoring overflow 2
0| of 1] 1 3 !
1/ o] 1] 0 -6
1] 1 o] 1 -3
Full Adder Ripple-carry Adder

e Just concatenate the full adders

ao bo a bl az b2

Full

er Cout

azibzq

ECE/CS 552: Introduction To Computer Architecture

Ripple-carry Subtractor
e A-B=A+(-B)=>invert B and set ¢;, to 1
Full

Add— Cout
er

/N

aoby aib; @by asz bs

Combined Ripple-carry
Adder/Subtractor

e Control = 1 => subtract
e XOR B with control and set c;, to control

b3

operatior

Cout

Carry Lookahead

e The above ALU is too slow
— Gate delays for add = 32 x FA + XOR ~= 64
e Theoretically, in parallel
= Sumg = f(Cjp, ao, by)
— Sum; = f(c;,, &...ay, b;...by)
= Sumg,; = f(Cjp, agp..-ag, Pgy.--0p)
e Any boolean function in two levels, right?
— Wrong! Too much fan-in!

Carry Lookahead

e Need compromise
— Build tree so delay is O(log, n) for n bits
— E.g. 2 x 5 gate delays for 32 bits
e We will consider basic concept with
— 4 bits
— 16 bits
e Warning: a little convoluted

Carry Lookahead

0101 0100
00110110

Need both 1 to generate carry and at least one to
propagate carry

Define: g; = &; * b; ## carry generate
p; = & + b; ## carry propagate

Recall:c;,; =a*b;+a*c+b*¢
=% b+ (a +b) * ¢
S0t

Carry Lookahead

e Therefore

C1=0o*+ Po ™ Co

Co=01+P1*Cy =0gy+Py*(Jo+ Po * Co)
=01+ P1* ot PP ¥ Co

C3= 0+ P2 U1t P2 *P1" Yot P2 " P1* Po™* Co

C4= 03 * P3*dz + P5*P2*01 + P3*P2*P1*To + P3*P2*P1*Po*Co

e Uses one level to form p;and g;, two levels
for carry

e But, this needs n+1 fanin at the OR and the
rightmost AND

ECE/CS 552: Introduction To Computer Architecture

: Hierarchical Carry Lookahead
4-bit Carry Lookahead Adder . y
for 16 bits
C
Cq =— Carry Lookahead Block 2 co
C15%— Carry Lookahead Block
gsP3asbs g2p2azbz g1P1a1by goPoagho
! l il l l i I l l th l G P abipas| GP abgii | GP asrbar| GP agsbos
C3 C2 C1 1Co | 1111 TTll 111 1111
C1. Cg Ca o]
I } 1 !
S3 S2 S1 So l l l l
S12-15 Sg-11 S4-7 S0-3
Hierarchical CLA for 16 bits Carry Lookahead Basics
Build 16-bit adder from four 4-bit adders
Figure out G and P for 4 bits together Fill in the holes in the G’s and P’s
Go3 =03+ P3* Gz +P3 *P2* 91t P3 *P2*P1* do Gi « = Gjuix + P« * Gij (assume i<j+l<k)
Pos=Ps *Po* P * Py (Notation a little different from the book) Pic = Pii* Prs i
Ga7=07+Pr*ds* Pr *Po* s+ Pr* Ps* Ps* U Gor = Gas *+ Pay* Gos Pos = Pos* Pas
Ps7=P7 *P" Ps* P4
Gigrs= * xpy ip xp% Gg15 = Graas + P121s * Gea Pgis = Pg11* Pis 15
1215 = 915 ¥ P15 " G1a * P1s™ P14 ™ 913+ P15 * P1a™ P13 ™ 912
Pir1s=Pis * Pra* Pra* Pr» Goa5 = Gg s + Pgs * Go7 Po1s = Po7* Pg 15

CLA: Compute G's and P’s CLA: Compute Carries

d12 - 915 ds - d11 J4 - 97 J0-93
P12 - P15 Ps - P11 P4 - P7 Po - P3

ECE/CS 552: Introduction To Computer Architecture

Other Adders: Carry

Select

e Two adds in parallel; with and without c;,
— When C,, is done, select correct result

Full Adder

Full Adder |0
Full Adder| 1
next
select
2-1 Mux select

Other Adders: Carry Save
A+B=>S

Save carries A+ B =>S, C

Use C;j, A+ B + C =>S1, S2 (3# to 2# in parallel)

Used in combinational multipliers by building a
Wallace Tree

Adding Up Many Bits

So
CSA

S, S,

Logical Operations

e Bitwise AND, OR, XOR, NOR
— Implement w/ 32 gates in parallel
e Shifts and rotates
- rol => rotate left (MSB->LSB)
— ror => rotate right (LSB->MSB)
- sll -> shift left logical (0->LSB)
— srl -> shift right logical (0->LSB)
— sra -> shift right arithmetic (old MSB->new MSB)

I
sOg

s0; sOg s0g S0, s0, 0 s0p O

slysly Slgsly slzo slgo

Mux [shift based on 2" bit by 0 or 4| shamt2
I

douty dout;

Shifter

E.g., Shift left logical for d<7:0> and shamt<2:0>

Using 2-1 Muxes called Mux(select, ing, in,)

stage0<7:0> = Mux(shamt<0>,d<7:0>, 0 || d<7:1>)
stage1<7:0> = Mux(shamt<1>, stage0<7:0>, 00 || stage0<6:2>)
dout<7:0) = Mux(shamt<2>, stage1<7:0>, 0000 || stage1<3:0>)

For Barrel shifter used wider muxes

ECE/CS 552: Introduction To Computer Architecture

All Together

X operation
invert carryip

—{ D

D x| result

Add

Mux

Overflow

e With n bits only 2" combinations

e Unsigned [0, 2"-1], 2’s complement [-2"1,
2m1-1]

e Unsigned Add
5+6>7:101+110=>1011
(3:0) = a(2:0) + b(2:0) => overflow = f(3)
Carryout from MSB

Overflow

e More involved for 2’s complement
l+-1=-2:

111 + 111 =1110

110 =-2 is correct

e Can’t just use carry-out to signal overflow

Addition Overflow

e When is overflow NOT possible?
(p1,p2)>0and (n1,n2)<0
pl+p2
pl + nl not possible
nl + p2 not possible
nl+n2

e Just checking signs of inputs is not
sufficient

Addition Overflow

©2+3=5>4:010+011=101=?-3<0

— Sum of two positive numbers should not be
negative

Conclude: overflow
e-1+-4:111+100=011>0

— Sum of two negative numbers should not be
positive
Conclude: overflow
Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

Subtraction Overflow

o No overflow on a-b if signs are the same
e Neg — pos => neg ;; overflow otherwise

® Pos — neg => pos ;; overflow otherwise
Overflow = f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

ECE/CS 552: Introduction To Computer Architecture

What to do on Overflow? Zero and Negative
e Ignore ! (C language semantics)

— What about Java? (try/catch?)
e Flag — condition code
e Sticky flag — e.g. for floating point

— Otherwise gets in the way of fast hardware
e Trap — possibly maskable

— MIPS has e.g. add that traps, addu that does
not

e Zero = ~[f(2) + f(1) + f(0)]
o Negative = f(2) (sign bit)

Zero and Negative

Summary
e May also want correct answer even on e Binary representations, signed/unsigned
overflow e Arithmetic

e Negative = (a<b) =(a-hb) <0even if — Full adder, ripple-carry, carry lookahead
overflow

— Carry-select, Carry-save

e E.g.is-4<2? — Overflow, negative
100 - 010 = 1010 (-4 — 2 = -6): Overflow! - M_ore (multiply/divide/FP) later
o Work it out: negative = f(2) XOR overflow e Logical

- Shift, and, or

ECE/CS 552: Introduction To Computer Architecture

