ECE/CS 552: Arithmetic Il

Instructor: Mikko H Lipasti

Fall 2010
University of Wisconsin-Madison

Lecture notes created by Mikko Lipasti partially
based on notes by Mark Hill

Basic Arithmetic and the ALU

e Earlier in the semester

e Number representations, 2°s complement,
unsigned

o Addition/Subtraction
e Add/Sub ALU
e Full adder, ripple carry, subtraction
e Carry-lookahead addition
e [ogical operations
eand, or, xor, nor, shifts
e Overflow

Basic Arithmetic and the ALU Multiplication 1000
. x 1001
o Flashback to 3™ grad
o Now al\s/I ack to 3" grade 1000
T — Multiplier
— Integer multiplication S
A — Multiplicand 0000
Booth’s algorithm Parti
— Partial products
— Integer division — Final sum vwe
Restoring, non-restoring ® Base 10: 8x9=72 1 000
— Floating point representation ~PP:8+0+0+64=72 1001000
_ Floating point addition, multiplication e How wide is the result?
. . — log(n x m) = log(n) + log(m)
e These are not crucial for the project 3B x 32b = 64b result
3 4
. 16-bit Array Multiplier
Array Multiplier
1 000 e Adding all partial products
simultaneously using an
x 1001 array of basic cells
1]o]o 0‘
ofofofo Sy Cin A B
010070 = (i [Source: J.
1(01]010 T Hayes, Univ. of
Michigan]
1001000

(C) 2008-2009 by Yu Hen Hu

o Conceptually straightforward
e Fairly expensive hardware, integer multiplies relatively rare
e Mostly used in array address calc: replace with shifts

6

ECE/CS 552: Introduction To Computer Architecture

Instead: Multicycle Multipliers

o Combinational multipliers

— Very hardware-intensive

— Integer multiply relatively rare

— Not the right place to spend resources
e Multicycle multipliers

— Iterate through bits of multiplier

— Conditionally add shifted multiplicand

1000
. . x1001
Multiplier “1o00
0000
—
Multiplicand 0000
shift left 1000
64 bits 1001000

Multiplier
Shift right

32 bits

64-bit ALU

‘ Product

| 64 bits

Write

p Multplier0 = 1 1. Test _Multplier0 = 0
Multipliero
1a. Add multiplicand to product and
place the result in Product register
1000 l l
x 1001 lz Shift the Multiplicand register left 1 bit l
1000 1
0000 l 3. Shift the Multiplier register right 1 bit]
0000 l
1000 S2nd repetition >0 < 32 repetiions
1001000 Ves: 32 repetitions
:

Multiplier Improvements

e Do we really need a 64-bit adder?
— No, since low-order bits are not involved
— Hence, just use a 32-bit adder
Shift product register right on every step
e Do we really need a separate multiplier
register?
— No, since low-order bits of 64-bit product are
initially unused
— Hence, just store multiplier there initially

1000
.- x1001
Multiplier T1o000
0000
Multiplicand 0000
32 bits 1000
| 1001000

32-bit ALY
L —
Shift right
Propluct Write | @

| 64 bits T

1

Multiplier

1a. Add multiplicand to the left half of
the product and place the result in
the left half of the Product register

1000 l l
x1001 I 2. Shift the Product register right 1 bit |
1000 l
0000
0000 Gond repetition >0 < 32 repetitons
1000 Yes: 32 repetitions
1001000

ECE/CS 552: Introduction To Computer Architecture

Signed Multiplication

e Recall
— Forp=axb,ifa<0 or b<0, thenp <0
— Ifa<0 and b<0, then p > 0
— Hence sign(p) = sign(a) xor sign(b)
e Hence
— Convert multiplier, multiplicand to positive number
with (n-1) bits
— Multiply positive numbers
— Compute sign, convert product accordingly
e Or,
— Perform sign-extension on shifts for prev. design
— Right answer falls out

Booth’s Encoding

e Recall grade school trick
— When multiplying by 9:
Multiply by 10 (easy, just shift digits left)
Subtract once
- E.g.
123454 x 9 =123454 x (10— 1) = 1234540 — 123454

Converts addition of six partial products to one shift and one
subtraction

® Booth’s algorithm applies same principle
— Except no ‘9’ in binary, just ‘1’ and ‘0’
— So, it’s actually easier!

Booth’s Encoding

e Search for a run of ‘1’ bits in the multiplier
— E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle
— Multiplying by ‘0110’ (6 in decimal) is equivalent to
multiplying by 8 and subtracting twice, since 6 x m =
(8-2)xm=8m-2m
e Hence, iterate right to left and:
— Subtract multiplicand from product at first ‘1’
— Add multiplicand to product after last 1°
— Don’t do either for ‘1’ bits in the middle

Booth’s Algorithm

Current |Bitto |Explanation Example Operation
bit right

1 0 Begins run of ‘1’ 00001111000 | Subtract
1 1 Middle of run of ‘1’ | 00001111000 | Nothing
0 1 End of a run of ‘1’ 00001111000 |Add

0 0 Middle of a run of ‘0’ | 00001111000 | Nothing

Booth’s Encoding

e Really just a new way to encode numbers
— Normally positionally weighted as 2"
— With Booth, each position has a sign bit
— Can be extended to multiple bits

0 |1 |1 |0 |Binary
+1 (0 |[-1 |0 |1-bit Booth
+2 -2 2-bit Booth

2-bits/cycle Booth Multiplier

e For every pair of multiplier bits
— If Booth’s encoding is ‘-2’
Shift multiplicand left by 1, then subtract
— If Booth’s encoding is ‘-1’
Subtract
— If Booth’s encoding is ‘0’
Do nothing
— If Booth’s encoding is ‘1’
Add
— If Booth’s encoding is ‘2’
Shift multiplicand left by 1, then add

ECE/CS 552: Introduction To Computer Architecture

1 bit Booth
2 bits/cycle Booth’ T
its/cycle Booth's T
10 -M;
11 +0
Current | Previous | Operation Explanation
oofo +0;shift 2 | [00] => +0, [00] => +0; 2x(+0)+(+0)=+0
001 +M; shift 2 | [00] => +0, [01] => +M; 2x(+0)+(+M)=+M
o010 +M; shift 2 | [01] => +M, [10] => -M; 2x(+M)+(-M)=+M
o011 +2M; shift 2 | [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M
100 -2M; shift 2 | [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M
1001 -M; shift 2 | [10] => -M, [01] => +M; 2x(-M)+(+M)=-M
11]0 -M; shift 2 | [11] => +0, [10] => -M; 2x(+0)+(-M)=-M
111 +0; shift 2 | [11] => +0, [11] => +0; 2X(+0)+(+0)=+0

Booth’s Example

e Negative multiplicand:

-6x 6=-36
1010x 0110, 0110 in Booth’s encoding is +0-0
Hence:

11111010 x 0 0000 0000

1111 0100 x-1 0000 1100

1110 1000 X0 0000 0000

1101 0000 X +1 1101 0000

Final Sum: 1101 1100 (-36)

20

Booth’s Example

e Negative multiplier:

Integer Division
® Again, back to 3 grade (74 ~ 8 =9 rem 2)

1 0 0 1 Quotient
6x-2=12
. . . Divisor 1 0 0 O0f1 0 0 1 0 1 O Dividend
1010x 1110, 1110 in Booth’s encoding is 00-0 Lo o o
Hence:
1111 1010 x0 0000 0000 10
1111 0100 x -1 0000 1100 10 1
1110 1000 x0 0000 0000 101 0
1101 0000 x0 0000 0000 10 0 0
Final Sum: 0000 1100 (12) _
1 0 Remainder
21 22
st
Integer e

Integer Division

e How does hardware know if division fits?
— Condition: if remainder > divisor
— Use subtraction: (remainder — divisor) > 0
e OK, so if it fits, what do we do?
— Remainder, ,; = Remainder, — divisor
o What if it doesn’t fit?
— Have to restore original remainder
o Called restoring division

23

resultin the Remainder register

Division
(F4.40)

Remainder > 0 Remainder <0

2a. Shift the Quotient register 10 the left 2b. Restore the original value by adding
Setting the new rightmost bitto 1 the Divisor register to the Remainder
register and place the sumin the

Remainder register. Also shift the
Quotient register to te Ief, setting the

new least significant bit 0 0

1 0 0 1 Quotient

Divisor 1 0 0 0/1 00 10 1 0 Dividend l—‘
-1000 1

o
101

1010
-1000
1 0 Remainder

No: <33 repetiions

Ves: 33 repetitons

24

ECE/CS 552: Introduction To Computer Architecture

1 0 0 1 Quotient
Divisor 1 0 00/100 10 1 0 Dividend
PR -1000
Integer Division ro
101
1010
-1000
1 0 Remainder
Divisor
Shift right
64 bits
—
Quotient
64-bit ALU Shift left

32 bits

Division Improvements

e Skip first subtract
— Can’t shift ‘1’ into quotient anyway
— Hence shift first, then subtract
Undo extra shift at end
e Hardware similar to multiplier
— Can store quotient in remainder register

| Remainder wite — Only need 32b ALU
| 64 bits Shift remainder left vs. divisor right
25 26
Improved B ShmmeRemamievreg\stel\ehlb\t] Improved DIVIdeI’ (F4.41)
Divider T R e I .
place meRv:'s“ull me":?e';w’s‘l:a" ofthe Divisor
(F440) /\ 32 bits
3. shit e Ron J DT D oo T J‘ e By 32-bit ALU/
B e 0 ARy & AR L
P T e e A c s ISt i) l
Shift right)
Remainder shift left | Control
Write | test
| 64 bits T
Done Ifof Remai C1bit 27 28
Further Improvements Non-restoring Division
e Division still takes: e Consider remainder to be restored:
— 2 ALU cycles per bit position Ri=R;; -d<0
1 to check for divisibility (subtract) — Since R; is negative, we must restore 1.t, right?
One to restore (if needed) — Well, maybe not. Consider next step i+1:
. R, =2x[R)-d=2xR;-d)+d
e Can reduce to 1 cycle per bit i = 2x (Ry) xR~ i
8 L e Hence, we can compute R;,, by not restoring R;,
— Called non-restoring division and adding d instead of subtracting d
— Avoids restore of remainder when test fails — Same value for Ry, results
e Throughput of 1 bit per cycle
29 30

ECE/CS 552: Introduction To Computer Architecture

NR Division Example

Iteration | Step Divisor | Remainder
0 Initial values 0010 |0000 0111
Shift rem left 1 0010 |0000 1110

1 2: Rem = Rem - Div 0010 1110 1110
3b: Rem < 0 (add next), sll 0 |0010 |1101 1100

2 2: Rem = Rem + Div 0010 |1111 1100
3b: Rem < 0 (add next), sll 0 |0010 |1111 1000

2: Rem = Rem + Div 0010 |0001 1000

3 3a: Rem > 0 (sub next), sll 1 {0010 | 0011 0001
4 Rem = Rem — Div 0010 | 0001 0001
Rem > 0 (sub next), sll 1 0010 |0010 0011

Shift Rem right by 1 0010 |0001 0011

31

Floating Point

e Want to represent larger range of numbers
— Fixed point (integer): -2*! ... (2™ -1)
o How? Sacrifice precision for range by
providing exponent to shift relative weight
of each bit position

e Similar to scientific notation:
3.14159x 105

e Cannot specify every discrete value in the
range, but can span much larger range

32

Floating Point

o Still use a fixed number of bits
— Sign bit S, exponent E, significand F
— Value: (-1)S x Fx 2F
o IEEE 754 standard

Size Exponent | Significand | Range
Single precision |32b 8b 23b 2x10+/-38
Double precision | 64b 11b 52b 2x10*/-308

33

Floating Point Exponent

e Exponent specified in biased or excess
notation

o Why?
— To simplify sorting
— Sign bit is MSB to ease sorting
— 2’s complement exponent:
Large numbers have positive exponent
Small numbers have negative exponent
— Sorting does not follow naturally

34

Excess or Biased Exponent

Exponent |2’s Compl |Excess-127
-127 1000 0001 {0000 0000
-126 1000 0010 {0000 0001
+127 0111 1111 11111110

e Value: (-1)8 x F x 2(E-bias)
— SP: bias is 127
— DP: bias is 1023

35

Floating Point Normalization

e S EF representation allows more than one
representation for a particular value, e.g.
1.0x10°= 0.1 x 10°= 10.0x 10*
— This makes comparison operations difficult
— Prefer to have a single representation
e Hence, normalize by convention:
— Only one digit to the left of the floating point
— In binary, that digit must be a 1

Since leading ‘1” is implicit, no need to store it
Hence, obtain one extra bit of precision for free

36

ECE/CS 552: Introduction To Computer Architecture

FP Overflow/Underflow

e FP Overflow
— Analogous to integer overflow
— Result is too big to represent
— Means exponent is too big
e FP Underflow
— Result is too small to represent
— Means exponent is too small (too negative)
e Both can raise an exception under [EEE754

37

IEEE754 Special Cases

Single Precision Double Precision Value

Exponent | Significand | Exponent | Significand

0 0 0 0 0
0 nonzero 0 nonzero ddenormalized
1-254 anything 1-2046 anything 4fp number
255 0 2047 0 dinfinity
255 nonzero 2047 nonzero NaN (Not a
Number)

38

FP Rounding

e Rounding is important

— Small errors accumulate over billions of ops
e FP rounding hardware helps

— Compute extra guard bit beyond 23/52 bits

— Further, compute additional round bit beyond that

Multiply may result in leading 0 bit, normalize shifts guard
bit into product, leaving round bit for rounding

— Finally, keep sticky bit that is set whenever ‘1” bits
are “lost” to the right
Differentiates between 0.5 and 0.500000000001

39

Floating Point Addition

e Just like grade school
— First, align decimal points

— Then, add significands
— Finally, normalize result
e Example 9.997 x 102 9.997000 x 102
4.631x 10 0.004631 x 102
Sum 10.001631 x 102
Normalized 1.0001631 x 108

40

FP [sign | Expuneml Significand I [sign | Expnnenll significand

Adder
(F4.45)

Compare
exponents

Shift smaller
number right

Exponent
difference L
T l—‘¥ ™
N

Shift right

— H—ﬁ

Big ALU
v v
@D
decrement

Shift left or right
Rounding hardware

Ll Normalize

Round

FP Multiplication

e Sign: P, = A xor B,
e Exponent: P = A + By
— Due to bias/excess, must subtract bias
e=el+e2
E=e+1023=cl +e2+1023
E=(E1-1023)+ (E2-1023)+ 1023
E=E1+E2-1023
e Significand: P, = A x By
— Standard integer multiply (23b or 52b + g/1/s bits)
— Use Wallace tree of CSAs to sum partial products

22

ECE/CS 552: Introduction To Computer Architecture

FP Multiplication

e Compute sign, exponent, significand
e Normalize

_ Shift left, right by 1
o Check for overflow, underflow
e Round

e Normalize again (if necessary)

43

Summary

e Integer multiply
— Combinational
— Multicycle
— Booth’s algorithm
e Integer divide
— Multicycle restoring
— Non-restoring

44

Summary

e Floating point representation
— Normalization
— Overflow, underflow
— Rounding

e Floating point add

e Floating point multiply

45

ECE/CS 552: Introduction To Computer Architecture

