ECE/CS 552: Arithmetic II

Instructor: Mikko H Lipasti
Fall 2010
University of Wisconsin-Madison

Lecture notes created by Mikko Lipasti partially based on notes by Mark Hill

Basic Arithmetic and the ALU

- Earlier in the semester
- Number representations, 2's complement, unsigned
- Addition/Subtraction
- Add/Sub ALU
- Full adder, ripple carry, subtraction
- Carry-lookahead addition
- Logical operations
- and, or, xor, nor, shifts
- Overflow

Basic Arithmetic and the ALU

- Now
- Integer multiplication
- Booth's algorithm
- Integer division
- Restoring, non-restoring
- Floating point representation
- Floating point addition, multiplication
- These are not crucial for the project

Multiplication

- Flashback to $3^{\text {rd }}$ grade
- Multiplier
- Multiplicand
- Partial products
- Final sum
- Base 10: $8 \times 9=72$
- PP: $8+0+0+64=72$
- How wide is the result?

$-\log (\mathrm{nx} \mathrm{m})=\log (\mathrm{n})+\log (\mathrm{m})$
$-32 b \times 32 b=64 b$ result

- Conceptually straightforward
- Fairly expensive hardware, integer multiplies relatively rare - Mostly used in array address calc: replace with shifts

Instead: Multicycle Multipliers

- Combinational multipliers
- Very hardware-intensive
- Integer multiply relatively rare
- Not the right place to spend resources
- Multicycle multipliers
- Iterate through bits of multiplier
- Conditionally add shifted multiplicand

Multiplier Improvements

- Do we really need a 64-bit adder?
- No, since low-order bits are not involved
- Hence, just use a 32-bit adder
- Shift product register right on every step
- Do we really need a separate multiplier register?
- No, since low-order bits of 64-bit product are initially unused
- Hence, just store multiplier there initially

Signed Multiplication

- Recall
- For $\mathrm{p}=\mathrm{ax} \mathrm{b}$, if $\mathrm{a}<0$ or $\mathrm{b}<0$, then $\mathrm{p}<0$
- If $a<0$ and $b<0$, then $p>0$
- Hence $\operatorname{sign}(\mathrm{p})=\operatorname{sign}(\mathrm{a})$ xor $\operatorname{sign}(\mathrm{b})$
- Hence
- Convert multiplier, multiplicand to positive number with ($\mathrm{n}-1$) bits
- Multiply positive numbers
- Compute sign, convert product accordingly
- Or,
- Perform sign-extension on shifts for prev. design
- Right answer falls out

Booth's Encoding

- Recall grade school trick
- When multiplying by 9 :
- Multiply by 10 (easy, just shift digits left)
- Subtract once
- E.g.
- $123454 \times 9=123454 \times(10-1)=1234540-123454$
- Converts addition of six partial products to one shift and one subtraction
- Booth's algorithm applies same principle
- Except no ' 9 ' in binary, just ' 1 ' and ' 0 '
- So, it's actually easier!

Booth's Encoding

- Search for a run of ' 1 ' bits in the multiplier
- E.g. ' 0110 ' has a run of 2 ' 1 ' bits in the middle
- Multiplying by ' 0110 ' (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since $6 \times \mathrm{m}=$ $(8-2) \times m=8 m-2 m$
- Hence, iterate right to left and:
- Subtract multiplicand from product at first ' 1 '
- Add multiplicand to product after last ' 1 '
- Don't do either for ' 1 ' bits in the middle

Booth's Algorithm

Current bit	Bit to right	Explanation	Example	Operation
1	0	Begins run of ' 1 '	00001111000	Subtract
1	1	Middle of run of ' 1 '	00001111000	Nothing
0	1	End of a run of ' 1 '	00001111000	Add
0	0	Middle of a run of ' 0 '	00001111000	Nothing

2-bits/cycle Booth Multiplier

- For every pair of multiplier bits
- If Booth's encoding is ' -2 '
- Shift multiplicand left by 1 , then subtract
- If Booth's encoding is ' -1 '
- Subtract
- If Booth's encoding is ' 0 '
- Do nothing
- If Booth's encoding is ' 1 ' - Add
- If Booth's encoding is ' 2 '
- Shift multiplicand left by 1 , then add

2 bits/cycle Booth's

Current	Previous	Operation	Explanation
00	0	+0;shift 2	[00] $=>+0,[00]=>+0 ; 2 \times(+0)+(+0)=+0$
00	1	+M; shift 2	[00] $=>+0,[01]=>+M ; 2 x(+0)+(+M)=+M$
01	0	+M; shift 2	$[01]=>+M,[10]=>-M ; 2 x(+M)+(-M)=+M$
01	1	+2M; shift 2	$[01]=>+M,[11]=>+0 ; 2 x(+M)+(+0)=+2 M$
10	0	-2M; shift 2	[10] $=>-\mathrm{M},[00]=>+0 ; 2 \times(-M)+(+0)=-2 \mathrm{M}$
10	1	-M; shift 2	[10] $=>-\mathrm{M},[01]=>+M ; 2 \times(-M)+(+M)=-M$
11	0	-M; shift 2	[11] $=>+0,[10]=>-M ; 2 x(+0)+(-M)=-M$
11	1	+0; shift 2	[11] $=>+0,[11]=>+0 ; 2 \times(+0)+(+0)=+0$

Booth's Example

- Negative multiplier:
$-6 x-2=12$
$1010 \times 1110,1110$ in Booth's encoding is $00-0$
Hence

11111010	$\times 0$	00000000
11110100	$\times-1$	00001100
11101000	$\times 0$	00000000
11010000	$\times 0$	00000000
	Final Sum:	$00001100(12)$

Integer Division

- Again, back to $3^{\text {rd }}$ grade $(74 \div 8=9$ rem 2$)$

Integer Division

- How does hardware know if division fits?
- Condition: if remainder \geq divisor
- Use subtraction: (remainder - divisor) ≥ 0
- OK, so if it fits, what do we do?
- Remainder $_{n+1}=$ Remainder $_{n}$ - divisor
- What if it doesn't fit?
- Have to restore original remainder
- Called restoring division

Booth's Example

- Negative multiplicand:
$-6 \times 6=-36$
$1010 \times 0110,0110$ in Booth's encoding is $+0-0$
Hence

11111010	$\times 0$	00000000
11110100	$x-1$	00001100
11101000	$\times 0$	00000000
11010000	$x+1$	11010000
	Final Sum:	$11011100(-36)$

Division Improvements

- Skip first subtract
- Can't shift ' 1 ' into quotient anyway
- Hence shift first, then subtract
- Undo extra shift at end
- Hardware similar to multiplier
- Can store quotient in remainder register
- Only need 32b ALU
- Shift remainder left vs. divisor right

Improved Divider (F4.41)

Further Improvements

- Division still takes:
- 2 ALU cycles per bit position
- 1 to check for divisibility (subtract)
- One to restore (if needed)
- Can reduce to 1 cycle per bit
- Called non-restoring division
- Avoids restore of remainder when test fails

Non-restoring Division

- Consider remainder to be restored:
$R_{i}=R_{i-1}-d<0$
- Since R_{i} is negative, we must restore it, right?
- Well, maybe not. Consider next step i+1:
$R_{i+1}=2 \times\left(R_{i}\right)-d=2 \times\left(R_{i}-d\right)+d$
- Hence, we can compute $\mathrm{R}_{\mathrm{i}+1}$ by not restoring R_{i}, and adding d instead of subtracting d
- Same value for $\mathrm{R}_{\mathrm{i}+1}$ results
- Throughput of 1 bit per cycle

NR Division Example			
Iteration	Step	Divisor	Remainder
0	Initial values	0010	00000111
	Shift rem left 1	0010	00001110
1	2: Rem = Rem - Div	0010	11101110
	3b: Rem < 0 (add next), sll 0	0010	11011100
2	2: Rem = Rem + Div	0010	11111100
	3b: Rem < 0 (add next), sll 0	0010	11111000
3	2: Rem = Rem + Div	0010	00011000
	3a: Rem > 0 (sub next), sll 1	0010	00110001
4	Rem $=$ Rem - Div	0010	00010001
	Rem > 0 (sub next), sll 1	0010	00100011
	Shift Rem right by 1	0010	00010011

Floating Point

- Still use a fixed number of bits
- Sign bit S, exponent E, significand F
- Value: $(-1)^{\mathrm{S}} \times \mathrm{F} \times 2^{\mathrm{E}}$
- IEEE 754 standard S| E F F

	Size	Exponent	Significand	Range
Single precision	32 b	8 b	23 b	$2 \times 10^{+/-38}$
Double precision	64 b	11 b	52 b	$2 \times 10^{+/-308}$

Floating Point

- Want to represent larger range of numbers
- Fixed point (integer): $-2^{\mathrm{n}-1} \ldots\left(2^{\mathrm{n}-1}-1\right)$
- How? Sacrifice precision for range by providing exponent to shift relative weight of each bit position
- Similar to scientific notation: 3.14159×10^{23}
- Cannot specify every discrete value in the range, but can span much larger range

Floating Point Exponent

- Exponent specified in biased or excess notation
- Why?
- To simplify sorting
- Sign bit is MSB to ease sorting
- 2's complement exponent:
- Large numbers have positive exponent
- Small numbers have negative exponent
- Sorting does not follow naturally

Excess or Biased Exponent

Exponent	2's Compl	Excess-127
-127	10000001	00000000
-126	10000010	00000001
\ldots	\ldots	\ldots
+127	01111111	11111110

- Value: $(-1)^{\mathrm{S}} \times \mathrm{Fx} 2^{\text {(E-bias) }}$
- SP: bias is 127
- DP: bias is 1023

Floating Point Normalization

- S,E,F representation allows more than one representation for a particular value, e.g. $1.0 \times 10^{5}=0.1 \times 10^{6}=10.0 \times 10^{4}$
- This makes comparison operations difficult
- Prefer to have a single representation
- Hence, normalize by convention:
- Only one digit to the left of the floating point
- In binary, that digit must be a 1
- Since leading ' 1 ' is implicit, no need to store it
- Hence, obtain one extra bit of precision for free

FP Overflow/Underflow

- FP Overflow
- Analogous to integer overflow
- Result is too big to represent
- Means exponent is too big
- FP Underflow
- Result is too small to represent
- Means exponent is too small (too negative)
- Both can raise an exception under IEEE754

IEEE754 Special Cases

Single Precision		Double Precision		Value
Exponent	Significand	Exponent	Significand	
0	0	0	0	0
0	nonzero	0	nonzero	ddenormalized
$1-254$	anything	$1-2046$	anything	fp number
255	0	2047	0	dinfinity
255	nonzero	2047	nonzero	NaN (Not a Number)

FP Rounding

- Rounding is important
- Small errors accumulate over billions of ops
- FP rounding hardware helps
- Compute extra guard bit beyond 23/52 bits
- Further, compute additional round bit beyond that
- Multiply may result in leading 0 bit, normalize shifts guard bit into product, leaving round bit for rounding
- Finally, keep sticky bit that is set whenever ' 1 ' bits are "lost" to the right
- Differentiates between 0.5 and 0.500000000001

Floating Point Addition

- Just like grade school
- First, align decimal points
- Then, add significands
- Finally, normalize result
- Example

9.997×10^{2}	9.997000×10^{2}
4.631×10^{-1}	0.004631×10^{2}
Sum	10.001631×10^{2}
Normalized	1.0001631×10^{3}

FP Multiplication

- Sign: $P_{s}=A_{s}$ xor B_{s}
- Exponent: $\mathrm{P}_{\mathrm{E}}=\mathrm{A}_{\mathrm{E}}+\mathrm{B}_{\mathrm{E}}$
- Due to bias/excess, must subtract bias

$$
\mathrm{e}=\mathrm{e} 1+\mathrm{e} 2
$$

$\mathrm{E}=\mathrm{e}+1023=\mathrm{e} 1+\mathrm{e} 2+1023$
$\mathrm{E}=(\mathrm{E} 1-1023)+(\mathrm{E} 2-1023)+1023$ $\mathrm{E}=\mathrm{E} 1+\mathrm{E} 2-1023$

- Significand: $\mathrm{P}_{\mathrm{F}}=\mathrm{A}_{\mathrm{F}} \times \mathrm{B}_{\mathrm{F}}$
- Standard integer multiply (23 b or $52 \mathrm{~b}+\mathrm{g} / \mathrm{r} / \mathrm{s}$ bits)
- Use Wallace tree of CSAs to sum partial products

FP Multiplication

- Compute sign, exponent, significand
- Normalize
- Shift left, right by 1
- Check for overflow, underflow
- Round
- Normalize again (if necessary)

Summary

- Integer multiply
- Combinational
- Multicycle
- Booth's algorithm
- Integer divide
- Multicycle restoring
- Non-restoring

Summary

- Floating point representation
- Normalization
- Overflow, underflow
- Rounding
- Floating point add
- Floating point multiply

