ECE/CS 552: Arithmetic II

Instructor: Mikko H Lipasti

Fall 2010 University of Wisconsin-Madison

Lecture notes created by Mikko Lipasti partially based on notes by Mark Hill

Basic Arithmetic and the ALU

- Earlier in the semester
 - Number representations, 2's complement, unsigned
 - Addition/Subtraction
 - Add/Sub ALU
 - Full adder, ripple carry, subtraction
 - Carry-lookahead addition
 - Logical operations
 - and, or, xor, nor, shifts
 - Overflow

Basic Arithmetic and the ALU **Multiplication** 1 0 0 0 x 1 0 0 1 • Flashback to 3rd grade • Now 1 0 0 0 - Multiplier - Integer multiplication - Multiplicand 0 0 0 0 Booth's algorithm - Partial products 0 0 0 0 - Integer division - Final sum • Base 10: 8 x 9 = 72 · Restoring, non-restoring $1 \ 0 \ 0 \ 0$ - PP: 8 + 0 + 0 + 64 = 72 - Floating point representation 1 0 0 1 0 0 0 • How wide is the result? - Floating point addition, multiplication $-\log(n \ge m) = \log(n) + \log(m)$ • These are not crucial for the project $-32b \ge 32b = 64b$ result

Signed Multiplication

Recall

- For p = a x b, if a<0 or b<0, then p < 0
- If a<0 and b<0, then p > 0
- Hence sign(p) = sign(a) xor sign(b)
- Hence
 - Convert multiplier, multiplicand to positive number with (n-1) bits
 - Multiply positive numbers
 - Compute sign, convert product accordingly
- Or,
 - Perform sign-extension on shifts for prev. design
 - Right answer falls out

Booth's Encoding • Recall grade school trick - When multiplying by 9: • Multiply by 10 (easy, just shift digits left)

- Subtract once
- E.g.
 - $123454 \ge 9 = 123454 \ge (10 1) = 1234540 123454$ · Converts addition of six partial products to one shift and one subtraction
- · Booth's algorithm applies same principle
 - Except no '9' in binary, just '1' and '0'
 - So, it's actually easier!

Booth's Encoding

• Search for a run of '1' bits in the multiplier

- E.g. '0110' has a run of 2 '1' bits in the middle
- Multiplying by '0110' (6 in decimal) is equivalent to multiplying by 8 and subtracting twice, since 6 x m = $(8-2) \ge m = 8m - 2m$
- · Hence, iterate right to left and:
 - Subtract multiplicand from product at first '1'
 - Add multiplicand to product after last '1'
 - Don't do either for '1' bits in the middle

Booth's Algorithm Current Bit to Explanation Example Operation bit right 00001111000 Subtract 1 0 Begins run of '1' 00001111000 Nothing Middle of run of '1' 1 00001111000 Add 0 End of a run of '1' 1 Middle of a run of '0' 00001111000 Nothing 0 0

Booth's Encoding

- Really just a new way to encode numbers
 - Normally positionally weighted as 2ⁿ
 - With Booth, each position has a sign bit
 - Can be extended to multiple bits

0	1	1	0	Binary
+1	0	-1	0	1-bit Booth
+2		-2		2-bit Booth

2-bits/cycle Booth Multiplier • For every pair of multiplier bits - If Booth's encoding is '-2' · Shift multiplicand left by 1, then subtract - If Booth's encoding is '-1' Subtract - If Booth's encoding is '0' Do nothing - If Booth's encoding is '1'

- Add
- If Booth's encoding is '2'
- · Shift multiplicand left by 1, then add

2 bits/cycle Booth's							
Current	Previous	Operation	Explanation				
00	0	+0;shift 2	[00] => +0, [00] => +0; 2x(+0))+(+0)=+0			
00	1	+M; shift 2	[00] => +0, [01] => +M; 2x(+0)+(+M)=+M			
01	0	+M; shift 2	[01] => +M, [10] => -M; 2x(+M	M+(-M)=+M			
01	1	+2M; shift 2	[01] => +M, [11] => +0; 2x(+	V)+(+0)=+2M			
10	0	-2M; shift 2	[10] => -M, [00] => +0; 2x(-M]	+(+0)=-2M			
10	1	-M; shift 2	[10] => -M, [01] => +M; 2x(-M)+(+M)=-M			
11	0	-M; shift 2	[11] => +0, [10] => -M; 2x(+0)+(-M)=-M			
11	1	+0; shift 2	[11] => +0, [11] => +0; 2x(+0))+(+0)=+0			

Booth's Example • Negative multiplicand: $-6 \times 6 = -36$ 1010 x 0110, 0110 in Booth's encoding is +0-0 Hence: $\frac{1111 1010 \times 0}{1111 0100 \times -1} 0000 0000$

1111 0100	x –1	0000 1100	
1110 1000	x 0	0000 0000	
1101 0000	x +1	1101 0000	
	Final Sum:	1101 1100 (-36)	
			1

Booth's Example

Negative multiplier: -6 x -2 = 12 1010 x 1110, 1110 in Booth's encoding is 00-0

Hence:			
	1111 1010	x 0	0000 0000
	1111 0100	x –1	0000 1100
	1110 1000	x 0	0000 0000
	1101 0000	x 0	0000 0000
		Final Sum:	0000 1100 (12)

Integer Division

• Again, back to 3^{rd} grade ($74 \div 8 = 9 \text{ rem } 2$)

								1	0	0	1	Quotient	
Divisor	1	0	0	0	1	0	0	1	0	1	0	Dividend	
				-	1	0	0	0					
								1	0				
								1	0	1			
								1	0	1	0		
							-	1	0	0	0		
										1	0	Remainder	
													22

Iteration	Step	Divisor	Remainder
0	Initial values	0010	0000 0111
0	Shift rem left 1	0010	0000 1110
1	2: Rem = Rem - Div	0010	1110 1110
1	3b: Rem < 0 (add next), sll 0	0010	1101 1100
2	2: Rem = Rem + Div	0010	1111 1100
2	3b: Rem < 0 (add next), sll 0	0010	1111 1000
2	2: Rem = Rem + Div	0010	0001 1000
3	3a: Rem > 0 (sub next), sll 1	0010	0011 0001
4	Rem = Rem – Div	0010	0001 0001
4	Rem > 0 (sub next), sll 1	0010	0010 0011
	Shift Rem right by 1	0010	0001 0011

Floating Point

- Want to represent larger range of numbers – Fixed point (integer): -2ⁿ⁻¹ ... (2ⁿ⁻¹-1)
- How? Sacrifice precision for range by providing exponent to shift relative weight of each bit position
- Similar to scientific notation: 3.14159 x 10²³
- Cannot specify every discrete value in the range, but can span much larger range

FP Overflow/Underflow

- FP Overflow
 - Analogous to integer overflow
 - Result is too big to represent
 - Means exponent is too big
- FP Underflow
 - Result is too small to represent
- Means exponent is too small (too negative)Both can raise an exception under IEEE754

IEEE754 Special Cases

Single P	Tecision	Double	recision	value
Exponent	Significand	Exponent	Significand	
0	0	0	0	0
0	nonzero	0	nonzero	denormalized
1-254	anything	1-2046	anything	dfp number
255	0	2047	0	dinfinity
255	nonzero	2047	nonzero	NaN (Not a Number)

FP Rounding

- Rounding is important
- Small errors accumulate over billions of opsFP rounding hardware helps
 - Compute extra guard bit beyond 23/52 bits
 - Further, compute additional round bit beyond that
 - Multiply may result in leading 0 bit, normalize shifts guard bit into product, leaving round bit for rounding
 - Finally, keep sticky bit that is set whenever '1' bits are "lost" to the right
 - Differentiates between 0.5 and 0.50000000001

Floating Point Addition

- Just like grade school
 - First, align decimal points
 - Then, add significands
 - Finally, normalize result

Example	9.997 x 10 ²	9.997000 x 10 ²
	4.631 x 10 ⁻¹	0.004631 x 10 ²
	Sum	10.001631 x 10 ²
	Normalized	1.0001631 x 10 ³

FP Multiplication

- Compute sign, exponent, significand
- Normalize
- Shift left, right by 1
- Check for overflow, underflow
- Round
- Normalize again (if necessary)

Summary

- Integer multiply
 - Combinational
 - Multicycle
 - Booth's algorithm
- Integer divide
 - Multicycle restoring
 - Non-restoring

43

Summary

- Floating point representation
 - Normalization
 - $\ Overflow, underflow$
 - Rounding
- Floating point add
- Floating point multiply