
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: ECE/CS 552: Arithmetic IIArithmetic II
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes created by Mikko Lipasti partially
based on notes by Mark Hill

Basic Arithmetic and the ALUBasic Arithmetic and the ALU
 Earlier in the semester
 Number representations, 2’s complement,

unsigned
 Addition/Subtraction

2

 Add/Sub ALU
Full adder, ripple carry, subtraction

 Carry-lookahead addition
 Logical operations
and, or, xor, nor, shifts

 Overflow

Basic Arithmetic and the ALUBasic Arithmetic and the ALU

 Now
– Integer multiplication

 Booth’s algorithm

3

– Integer division
 Restoring, non-restoring

– Floating point representation

– Floating point addition, multiplication

 These are not crucial for the project

MultiplicationMultiplication

 Flashback to 3rd grade
– Multiplier
– Multiplicand
– Partial products

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

4

– Partial products
– Final sum

 Base 10: 8 x 9 = 72
– PP: 8 + 0 + 0 + 64 = 72

 How wide is the result?
– log(n x m) = log(n) + log(m)
– 32b x 32b = 64b result

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Array MultiplierArray Multiplier
 Adding all partial products

simultaneously using an
array of basic cells

1 0 0 0

x 1 0 0 1

1 0 0 0
S C A B

(C) 2008-2009 by Yu Hen Hu
5

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Full
Adder

Sin Cin Ai Bj

Cout Sout

Ai ,Bj

1616--bit Array Multiplierbit Array Multiplier

6

 Conceptually straightforward
 Fairly expensive hardware, integer multiplies relatively rare

 Mostly used in array address calc: replace with shifts

[Source: J.
Hayes, Univ. of
Michigan]

ECE/CS 552: Introduction To Computer Architecture 2

Instead: Instead: MulticycleMulticycle MultipliersMultipliers

 Combinational multipliers
– Very hardware-intensive

– Integer multiply relatively rare

7

g p y y

– Not the right place to spend resources

 Multicycle multipliers
– Iterate through bits of multiplier

– Conditionally add shifted multiplicand

MultiplierMultiplier

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

8

MultiplierMultiplier
1. Test

Multip lier0

1a. Add multip licand to product and
place the result in Product register

Start

M ultip lier0 = 0M ultiplier0 = 1

1 0 0 0

9
Done

2. Shift the M ultip licand register le ft 1 b it

3. Sh ift the M ultip lier reg ister right 1 bit

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Multiplier ImprovementsMultiplier Improvements

 Do we really need a 64-bit adder?
– No, since low-order bits are not involved
– Hence, just use a 32-bit adder

10

 Shift product register right on every step

 Do we really need a separate multiplier
register?
– No, since low-order bits of 64-bit product are

initially unused
– Hence, just store multiplier there initially

MultiplierMultiplier

32 bits

Multiplicand

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

11

Control
testWrite

64 bits

Shift right
Product

32-bit ALU

MultiplierMultiplier
1. Test

P roduct0

1a. Add m ultiplicand to the left half of
the product and place the result in
the le ft half of the Product register

Start

Product0 = 0Product0 = 1

12D one

2. Shift the Product register right 1 bit

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

ECE/CS 552: Introduction To Computer Architecture 3

Signed MultiplicationSigned Multiplication
 Recall

– For p = a x b, if a<0 or b<0, then p < 0
– If a<0 and b<0, then p > 0
– Hence sign(p) = sign(a) xor sign(b)

 Hence

13

 Hence
– Convert multiplier, multiplicand to positive number

with (n-1) bits
– Multiply positive numbers
– Compute sign, convert product accordingly

 Or,
– Perform sign-extension on shifts for prev. design
– Right answer falls out

Booth’s EncodingBooth’s Encoding

 Recall grade school trick
– When multiplying by 9:

 Multiply by 10 (easy, just shift digits left)
 Subtract once

14

– E.g.
 123454 x 9 = 123454 x (10 – 1) = 1234540 – 123454
 Converts addition of six partial products to one shift and one

subtraction

 Booth’s algorithm applies same principle
– Except no ‘9’ in binary, just ‘1’ and ‘0’
– So, it’s actually easier!

Booth’s EncodingBooth’s Encoding

 Search for a run of ‘1’ bits in the multiplier
– E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle

– Multiplying by ‘0110’ (6 in decimal) is equivalent to
lti l i b 8 d bt ti t i i 6

15

multiplying by 8 and subtracting twice, since 6 x m =
(8 – 2) x m = 8m – 2m

 Hence, iterate right to left and:
– Subtract multiplicand from product at first ‘1’

– Add multiplicand to product after last ‘1’

– Don’t do either for ‘1’ bits in the middle

Booth’s AlgorithmBooth’s Algorithm
Current
bit

Bit to
right

Explanation Example Operation

1 0 Begins run of ‘1’ 00001111000 Subtract

16

1 1 Middle of run of ‘1’ 00001111000 Nothing

0 1 End of a run of ‘1’ 00001111000 Add

0 0 Middle of a run of ‘0’ 00001111000 Nothing

Booth’s EncodingBooth’s Encoding

 Really just a new way to encode numbers
– Normally positionally weighted as 2n

– With Booth, each position has a sign bit

17

, p g

– Can be extended to multiple bits

0 1 1 0 Binary
+1 0 -1 0 1-bit Booth
+2 -2 2-bit Booth

22--bits/cycle Booth Multiplierbits/cycle Booth Multiplier

 For every pair of multiplier bits
– If Booth’s encoding is ‘-2’

 Shift multiplicand left by 1, then subtract

– If Booth’s encoding is ‘-1’

18

If Booth s encoding is 1
 Subtract

– If Booth’s encoding is ‘0’
 Do nothing

– If Booth’s encoding is ‘1’
 Add

– If Booth’s encoding is ‘2’
 Shift multiplicand left by 1, then add

ECE/CS 552: Introduction To Computer Architecture 4

2 bits/cycle Booth’s2 bits/cycle Booth’s

Current Previous Operation Explanation

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M

1 bit Booth

00 +0

01 +M;

10 -M;

11 +0

19

01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0

Booth’s ExampleBooth’s Example

 Negative multiplicand:
-6 x 6 = -36

1010 x 0110, 0110 in Booth’s encoding is +0-0

20

, g

Hence:
1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x +1 1101 0000

Final Sum: 1101 1100 (-36)

Booth’s ExampleBooth’s Example

 Negative multiplier:
-6 x -2 = 12

1010 x 1110, 1110 in Booth’s encoding is 00-0

21

, g

Hence:
1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x 0 0000 0000

Final Sum: 0000 1100 (12)

Integer DivisionInteger Division
 Again, back to 3rd grade (74 ÷ 8 = 9 rem 2)

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

22

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

Integer DivisionInteger Division

 How does hardware know if division fits?
– Condition: if remainder ≥ divisor
– Use subtraction: (remainder – divisor) ≥ 0

23

 OK, so if it fits, what do we do?
– Remaindern+1 = Remaindern – divisor

 What if it doesn’t fit?
– Have to restore original remainder

 Called restoring division

Integer Integer
Division Division
(F4.40)(F4.40)

Test Remainder

2a. Shift the Quotient register to the left,
setting the new rightmost bit to 1

Start

Remainder < 0

2b. Restore the original value by adding
the Divisor register to the Remainder

register and place the sum in the
R i d i t Al hift th

1. Subtract the Divisor register from the
Remainder register and place the
 result in the Remainder register

Remainder > 0

–

24Done

3. Shift the Divisor register right 1 bit

33rd repetition?
No: < 33 repetitions

Yes: 33 repetitions

Remainder register. Also shift the
Quotient register to the left, setting the

new least significant bit to 01 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

ECE/CS 552: Introduction To Computer Architecture 5

Integer DivisionInteger Division

Divisor
Shift right

64 bits

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

25

64-bit ALU

Control
test

Quotient
Shift left

Remainder
Write

64 bits

32 bits

Division ImprovementsDivision Improvements

 Skip first subtract
– Can’t shift ‘1’ into quotient anyway

– Hence shift first, then subtract

26

,
 Undo extra shift at end

 Hardware similar to multiplier
– Can store quotient in remainder register

– Only need 32b ALU
 Shift remainder left vs. divisor right

Improved Improved
DividerDivider
(F4.40)(F4.40)

T e s t R e m a in d e r

S ta r t

R e m a in d e r < 0

2 . S u b t ra c t th e D iv is o r re g is te r f ro m th e
le f t h a l f o f th e R e m a in d e r re g is te r a n d
p la c e th e re s u lt in th e le ft h a l f o f th e

R e m a in d e r re g is te r

R e m a in d e r 0

1 . S h if t th e R e m a in d e r re g is te r le f t 1 b i t

–>

27D o n e . S h ift le ft h a l f o f R e m a in d e r r ig h t 1 b it

3 a . S h if t th e R e m a in d e r re g is te r to th e
 le ft , s e tt in g th e n e w r ig h tm o s t b it to 1

3 2 n d re p e t itio n ?
N o : < 3 2 re p e ti tio n s

Y e s : 3 2 r e p e ti tio n s

3 b . R e s to re th e o r ig in a l v a lu e b y a d d in g
th e D iv is o r re g is te r to th e le f t h a lf o f th e

R e m a in d e r re g is te r a n d p la c e th e s u m
 in th e le f t h a l f o f th e R e m a in d e r re g is te r .

A ls o s h if t th e R e m a in d e r re g is te r to th e
le f t , s e t t in g th e n e w r ig h tm o s t b i t to 0

Improved Divider (F4.41)Improved Divider (F4.41)

32 bits

Divisor

28

Write

64 bits

Shift left
Shift right

Remainder

32-bit ALU

Control
test

Further ImprovementsFurther Improvements

 Division still takes:
– 2 ALU cycles per bit position

 1 to check for divisibility (subtract)

29

 One to restore (if needed)

 Can reduce to 1 cycle per bit
– Called non-restoring division

– Avoids restore of remainder when test fails

NonNon--restoring Divisionrestoring Division

 Consider remainder to be restored:
Ri = Ri-1 – d < 0

– Since Ri is negative, we must restore it, right?

30

– Well, maybe not. Consider next step i+1:

Ri+1 = 2 x (Ri) – d = 2 x (Ri – d) + d

 Hence, we can compute Ri+1 by not restoring Ri,
and adding d instead of subtracting d
– Same value for Ri+1 results

 Throughput of 1 bit per cycle

ECE/CS 552: Introduction To Computer Architecture 6

NR Division ExampleNR Division Example
Iteration Step Divisor Remainder

0
Initial values 0010 0000 0111
Shift rem left 1 0010 0000 1110

1
2: Rem = Rem - Div 0010 1110 1110
3b: Rem < 0 (add next), sll 0 0010 1101 1100

31

(),

2
2: Rem = Rem + Div 0010 1111 1100
3b: Rem < 0 (add next), sll 0 0010 1111 1000

3
2: Rem = Rem + Div 0010 0001 1000
3a: Rem > 0 (sub next), sll 1 0010 0011 0001

4
Rem = Rem – Div 0010 0001 0001
Rem > 0 (sub next), sll 1 0010 0010 0011
Shift Rem right by 1 0010 0001 0011

Floating PointFloating Point

 Want to represent larger range of numbers
– Fixed point (integer): -2n-1 … (2n-1 –1)

 How? Sacrifice precision for range by
idi t t hift l ti i ht

32

providing exponent to shift relative weight
of each bit position

 Similar to scientific notation:
3.14159 x 1023

 Cannot specify every discrete value in the
range, but can span much larger range

Floating PointFloating Point

 Still use a fixed number of bits
– Sign bit S, exponent E, significand F

– Value: (-1)S x F x 2E

33

 IEEE 754 standard

Size Exponent Significand Range

Single precision 32b 8b 23b 2x10+/-38

Double precision 64b 11b 52b 2x10+/-308

S E F

Floating Point ExponentFloating Point Exponent

 Exponent specified in biased or excess
notation

 Why?

34

– To simplify sorting
– Sign bit is MSB to ease sorting
– 2’s complement exponent:

 Large numbers have positive exponent
 Small numbers have negative exponent

– Sorting does not follow naturally

Excess or Biased ExponentExcess or Biased Exponent
Exponent 2’s Compl Excess-127

-127 1000 0001 0000 0000

-126 1000 0010 0000 0001

35

… … …

+127 0111 1111 1111 1110

 Value: (-1)S x F x 2(E-bias)

– SP: bias is 127
– DP: bias is 1023

Floating Point NormalizationFloating Point Normalization

 S,E,F representation allows more than one
representation for a particular value, e.g.
1.0 x 105 = 0.1 x 106 = 10.0 x 104

– This makes comparison operations difficult

36

This makes comparison operations difficult
– Prefer to have a single representation

 Hence, normalize by convention:
– Only one digit to the left of the floating point
– In binary, that digit must be a 1

 Since leading ‘1’ is implicit, no need to store it
 Hence, obtain one extra bit of precision for free

ECE/CS 552: Introduction To Computer Architecture 7

FP Overflow/UnderflowFP Overflow/Underflow

 FP Overflow
– Analogous to integer overflow

– Result is too big to represent

37

– Means exponent is too big

 FP Underflow
– Result is too small to represent

– Means exponent is too small (too negative)

 Both can raise an exception under IEEE754

IEEE754 Special CasesIEEE754 Special Cases
Single Precision Double Precision Value

Exponent Significand Exponent Significand

0 0 0 0 0

0 nonzero 0 nonzero denormalized

38

0 nonzero 0 nonzero denormalized

1-254 anything 1-2046 anything fp number

255 0 2047 0 infinity

255 nonzero 2047 nonzero NaN (Not a
Number)

FP RoundingFP Rounding

 Rounding is important
– Small errors accumulate over billions of ops

 FP rounding hardware helps

39

– Compute extra guard bit beyond 23/52 bits

– Further, compute additional round bit beyond that
 Multiply may result in leading 0 bit, normalize shifts guard

bit into product, leaving round bit for rounding

– Finally, keep sticky bit that is set whenever ‘1’ bits
are “lost” to the right
 Differentiates between 0.5 and 0.500000000001

Floating Point AdditionFloating Point Addition

 Just like grade school
– First, align decimal points

– Then, add significands

40

, g

– Finally, normalize result

 Example 9.997 x 102 9.997000 x 102

4.631 x 10-1 0.004631 x 102

Sum 10.001631 x 102

Normalized 1.0001631 x 103

FP FP
Adder Adder
(F4.45)(F4.45)

0 10 1 0 1

Control

Small ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right
Shift smaller
number right

Compare

exponents

41

Big ALU

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Add

Normalize

Round

FP MultiplicationFP Multiplication

 Sign: Ps = As xor Bs

 Exponent: PE = AE + BE
– Due to bias/excess, must subtract bias

e = e1 + e2

42

e e1 + e2
E = e + 1023 = e1 + e2 + 1023
E = (E1 – 1023) + (E2 – 1023) + 1023
E = E1 + E2 –1023

 Significand: PF = AF x BF
– Standard integer multiply (23b or 52b + g/r/s bits)
– Use Wallace tree of CSAs to sum partial products

ECE/CS 552: Introduction To Computer Architecture 8

FP MultiplicationFP Multiplication

 Compute sign, exponent, significand
 Normalize

– Shift left, right by 1

43

Shift left, right by 1

 Check for overflow, underflow
 Round
 Normalize again (if necessary)

SummarySummary

 Integer multiply
– Combinational

– Multicycle

44

y

– Booth’s algorithm

 Integer divide
– Multicycle restoring

– Non-restoring

SummarySummary

 Floating point representation
– Normalization

– Overflow, underflow

45

,

– Rounding

 Floating point add
 Floating point multiply

