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ECE/CS 552: ECE/CS 552: Arithmetic IIArithmetic II
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes created by Mikko Lipasti partially 
based on notes by Mark Hill

Basic Arithmetic and the ALUBasic Arithmetic and the ALU
 Earlier in the semester
 Number representations, 2’s complement, 

unsigned
 Addition/Subtraction
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 Add/Sub ALU
Full adder, ripple carry, subtraction

 Carry-lookahead addition
 Logical operations
and, or, xor, nor, shifts

 Overflow

Basic Arithmetic and the ALUBasic Arithmetic and the ALU

 Now
– Integer multiplication

 Booth’s algorithm
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– Integer division
 Restoring, non-restoring

– Floating point representation

– Floating point addition, multiplication

 These are not crucial for the project

MultiplicationMultiplication

 Flashback to 3rd grade
– Multiplier
– Multiplicand
– Partial products

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0
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– Partial products
– Final sum

 Base 10: 8 x 9 = 72
– PP: 8 + 0 + 0 + 64 = 72

 How wide is the result?
– log(n x m) = log(n) + log(m)
– 32b x 32b = 64b result

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Array MultiplierArray Multiplier
 Adding all partial products 

simultaneously using an 
array of basic cells

1 0 0 0

x 1 0 0 1

1 0 0 0
S C A B

(C) 2008-2009 by Yu Hen Hu
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0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Full 
Adder

Sin Cin Ai Bj

Cout Sout

Ai ,Bj

1616--bit Array Multiplierbit Array Multiplier
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 Conceptually straightforward
 Fairly expensive hardware, integer multiplies relatively rare

 Mostly used in array address calc: replace with shifts

[Source: J. 
Hayes, Univ. of 
Michigan]
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Instead: Instead: MulticycleMulticycle MultipliersMultipliers

 Combinational multipliers
– Very hardware-intensive

– Integer multiply relatively rare
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g p y y

– Not the right place to spend resources

 Multicycle multipliers
– Iterate through bits of multiplier

– Conditionally add shifted multiplicand

MultiplierMultiplier

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0
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MultiplierMultiplier
1. Test 

Multip lier0

1a. Add multip licand to product and 
place the result in  Product register

Start

M ultip lier0  = 0M ultiplier0  = 1

1 0 0 0

9
Done

2. Shift the M ultip licand register le ft 1 b it

3. Sh ift the M ultip lier reg ister right 1  bit

32nd repetition?
No:  < 32 repetitions

Yes:  32 repetitions

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Multiplier ImprovementsMultiplier Improvements

 Do we really need a 64-bit adder?
– No, since low-order bits are not involved
– Hence, just use a 32-bit adder
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 Shift product register right on every step

 Do we really need a separate multiplier 
register?
– No, since low-order bits of 64-bit product are 

initially unused
– Hence, just store multiplier there initially

MultiplierMultiplier

32 bits

Multiplicand

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0
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Control 
testWrite

64 bits

Shift right
Product

32-bit ALU

MultiplierMultiplier
1. Test 

P roduct0

1a. Add m ultiplicand to the left half of 
the product and place the result in  
the  le ft half of the  Product register

Start

Product0 = 0Product0 =  1

12D one

2. Shift the Product register right 1 bit

32nd repetition?
No:  <  32 repetitions

Yes:  32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0
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Signed MultiplicationSigned Multiplication
 Recall

– For p = a x b, if a<0 or b<0, then p < 0
– If a<0 and b<0, then p > 0
– Hence sign(p) = sign(a) xor sign(b)

 Hence
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 Hence
– Convert multiplier, multiplicand to positive number 

with (n-1) bits
– Multiply positive numbers
– Compute sign, convert product accordingly

 Or,
– Perform sign-extension on shifts for prev. design
– Right answer falls out

Booth’s EncodingBooth’s Encoding

 Recall grade school trick
– When multiplying by 9:

 Multiply by 10 (easy, just shift digits left)
 Subtract once
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– E.g.
 123454 x 9 = 123454 x (10 – 1) = 1234540 – 123454
 Converts addition of six partial products to one shift and one 

subtraction

 Booth’s algorithm applies same principle
– Except no ‘9’ in binary, just ‘1’ and ‘0’
– So, it’s actually easier!

Booth’s EncodingBooth’s Encoding

 Search for a run of ‘1’ bits in the multiplier
– E.g. ‘0110’ has a run of 2 ‘1’ bits in the middle

– Multiplying by ‘0110’ (6 in decimal) is equivalent to 
lti l i b 8 d bt ti t i i 6
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multiplying by 8 and subtracting twice, since 6 x m = 
(8 – 2) x m = 8m – 2m

 Hence, iterate right to left and:
– Subtract multiplicand from product at first ‘1’

– Add multiplicand to product after last ‘1’

– Don’t do either for ‘1’ bits in the middle

Booth’s AlgorithmBooth’s Algorithm
Current 
bit

Bit to 
right

Explanation Example Operation

1 0 Begins run of ‘1’ 00001111000 Subtract
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1 1 Middle of run of ‘1’ 00001111000 Nothing

0 1 End of a run of ‘1’ 00001111000 Add

0 0 Middle of a run of ‘0’ 00001111000 Nothing

Booth’s EncodingBooth’s Encoding

 Really just a new way to encode numbers
– Normally positionally weighted as 2n

– With Booth, each position has a sign bit

17
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– Can be extended to multiple bits

0 1 1 0 Binary
+1 0 -1 0 1-bit  Booth
+2 -2 2-bit Booth

22--bits/cycle Booth Multiplierbits/cycle Booth Multiplier

 For every pair of multiplier bits
– If Booth’s encoding is ‘-2’

 Shift multiplicand left by 1, then subtract

– If Booth’s encoding is ‘-1’
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If Booth s encoding is 1
 Subtract

– If Booth’s encoding is ‘0’
 Do nothing

– If Booth’s encoding is ‘1’
 Add

– If Booth’s encoding is ‘2’
 Shift multiplicand left by 1, then add
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2 bits/cycle Booth’s2 bits/cycle Booth’s

Current Previous Operation Explanation

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M

1 bit  Booth

00 +0

01 +M;

10 -M;

11 +0
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01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0

Booth’s ExampleBooth’s Example

 Negative multiplicand: 
-6 x 6 = -36

1010 x 0110, 0110 in Booth’s encoding is +0-0
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Hence:
1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x +1 1101 0000

Final Sum: 1101 1100 (-36)

Booth’s ExampleBooth’s Example

 Negative multiplier: 
-6 x -2 = 12

1010 x 1110, 1110 in Booth’s encoding is 00-0

21
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Hence:
1111 1010 x 0 0000 0000

1111 0100 x –1 0000 1100

1110 1000 x 0 0000 0000

1101 0000 x 0 0000 0000

Final Sum: 0000 1100 (12)

Integer DivisionInteger Division
 Again, back to 3rd grade (74 ÷ 8 = 9 rem 2)

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

22

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

Integer DivisionInteger Division

 How does hardware know if division fits?
– Condition: if remainder ≥ divisor
– Use subtraction: (remainder – divisor) ≥ 0
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 OK, so if it fits, what do we do?
– Remaindern+1 = Remaindern – divisor

 What if it doesn’t fit?
– Have to restore original remainder

 Called restoring division

Integer Integer 
Division Division 
(F4.40)(F4.40)

Test Remainder

2a. Shift the Quotient register to the left, 
setting the new rightmost bit to 1

Start

Remainder < 0

2b. Restore the original value by adding 
the Divisor register to the Remainder 

register and place the sum in the 
R i d i t Al hift th

1. Subtract the Divisor register from the 
Remainder register and place the 
 result in the Remainder register

Remainder > 0

 

–

24Done

3. Shift the Divisor register right 1 bit

33rd repetition?
No:  < 33 repetitions

Yes:  33 repetitions

Remainder register. Also shift the
Quotient register to the left, setting the 

new least significant bit to 01 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder
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Integer DivisionInteger Division

Divisor
Shift right

64 bits

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder
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64-bit ALU

Control 
test

Quotient
Shift left

Remainder
Write

64 bits

32 bits

Division ImprovementsDivision Improvements

 Skip first subtract
– Can’t shift ‘1’ into quotient anyway

– Hence shift first, then subtract
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,
 Undo extra shift at end

 Hardware similar to multiplier
– Can store quotient in remainder register

– Only need 32b ALU
 Shift remainder left vs. divisor right

Improved Improved 
DividerDivider
(F4.40)(F4.40)

T e s t R e m a in d e r

S ta r t

R e m a in d e r <  0

2 . S u b t ra c t th e  D iv is o r  re g is te r  f ro m  th e  
le f t  h a l f o f th e  R e m a in d e r  re g is te r  a n d  
p la c e  th e  re s u lt  in  th e  le ft  h a l f o f th e  

R e m a in d e r re g is te r

R e m a in d e r  0

1 . S h if t th e  R e m a in d e r re g is te r  le f t  1  b i t

–>

27D o n e .  S h ift  le ft  h a l f o f R e m a in d e r r ig h t 1  b it

3 a . S h if t  th e  R e m a in d e r re g is te r  to  th e  
 le ft ,  s e tt in g  th e  n e w  r ig h tm o s t b it  to  1

3 2 n d  re p e t itio n ?
N o :  <  3 2  re p e ti tio n s

Y e s :   3 2  r e p e ti tio n s

3 b . R e s to re  th e  o r ig in a l v a lu e  b y  a d d in g  
th e  D iv is o r  re g is te r  to  th e  le f t  h a lf  o f  th e  

R e m a in d e r re g is te r  a n d  p la c e  th e  s u m  
 in  th e  le f t h a l f o f th e  R e m a in d e r  re g is te r . 

A ls o  s h if t  th e  R e m a in d e r re g is te r  to  th e  
le f t ,  s e t t in g  th e  n e w  r ig h tm o s t b i t to  0

Improved Divider (F4.41)Improved Divider (F4.41)

32 bits

Divisor
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Write

64 bits

Shift left
Shift right

Remainder

32-bit ALU

Control 
test

Further ImprovementsFurther Improvements

 Division still takes:
– 2 ALU cycles per bit position

 1 to check for divisibility (subtract)
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 One to restore (if needed)

 Can reduce to 1 cycle per bit
– Called non-restoring division

– Avoids restore of remainder when test fails

NonNon--restoring Divisionrestoring Division

 Consider remainder to be restored:
Ri = Ri-1 – d < 0

– Since Ri is negative, we must restore it, right?
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– Well, maybe not.  Consider next step i+1:

Ri+1 = 2 x (Ri) – d = 2 x (Ri – d) + d

 Hence, we can compute Ri+1 by not restoring Ri, 
and adding d instead of subtracting d
– Same value for Ri+1 results

 Throughput of 1 bit per cycle
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NR Division ExampleNR Division Example
Iteration Step Divisor Remainder

0
Initial values 0010 0000 0111
Shift rem left 1 0010 0000 1110

1
2: Rem = Rem - Div 0010 1110 1110
3b: Rem < 0 (add next), sll 0 0010 1101 1100
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( ),

2
2: Rem = Rem + Div 0010 1111 1100
3b: Rem < 0 (add next), sll 0 0010 1111 1000

3
2: Rem = Rem + Div 0010 0001 1000
3a: Rem > 0 (sub next), sll 1 0010 0011 0001

4
Rem = Rem – Div 0010 0001 0001
Rem > 0 (sub next), sll 1 0010 0010 0011
Shift Rem right by 1 0010 0001 0011

Floating PointFloating Point

 Want to represent larger range of numbers
– Fixed point (integer): -2n-1 … (2n-1 –1)

 How? Sacrifice precision for range by 
idi t t hift l ti i ht
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providing exponent to shift relative weight 
of each bit position

 Similar to scientific notation:
3.14159 x 1023

 Cannot specify every discrete value in the 
range, but can span much larger range

Floating PointFloating Point

 Still use a fixed number of bits
– Sign bit S, exponent E, significand F

– Value: (-1)S x F x 2E
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 IEEE 754 standard

Size Exponent Significand Range

Single precision 32b 8b 23b 2x10+/-38

Double precision 64b 11b 52b 2x10+/-308

S E F

Floating Point ExponentFloating Point Exponent

 Exponent specified in biased or excess
notation

 Why?
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– To simplify sorting
– Sign bit is MSB to ease sorting
– 2’s complement exponent:

 Large numbers have positive exponent
 Small numbers have negative exponent

– Sorting does not follow naturally

Excess or Biased ExponentExcess or Biased Exponent
Exponent 2’s Compl Excess-127

-127 1000 0001 0000 0000

-126 1000 0010 0000 0001
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… … …

+127 0111 1111 1111 1110

 Value: (-1)S x F x 2(E-bias)

– SP: bias is 127
– DP: bias is 1023

Floating Point NormalizationFloating Point Normalization

 S,E,F representation allows more than one 
representation for a particular value, e.g. 
1.0 x 105  = 0.1 x 106  = 10.0 x 104

– This makes comparison operations difficult
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This makes comparison operations difficult
– Prefer to have a single representation

 Hence, normalize by convention:
– Only one digit to the left of the floating point
– In binary, that digit must be a 1

 Since leading ‘1’ is implicit, no need to store it
 Hence, obtain one extra bit of precision for free
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FP Overflow/UnderflowFP Overflow/Underflow

 FP Overflow
– Analogous to integer overflow

– Result is too big to represent
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– Means exponent is too big

 FP Underflow
– Result is too small to represent

– Means exponent is too small (too negative)

 Both can raise an exception under IEEE754

IEEE754 Special CasesIEEE754 Special Cases
Single Precision Double Precision Value

Exponent Significand Exponent Significand

0 0 0 0 0

0 nonzero 0 nonzero denormalized
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0 nonzero 0 nonzero denormalized

1-254 anything 1-2046 anything fp number

255 0 2047 0 infinity

255 nonzero 2047 nonzero NaN (Not a 
Number)

FP RoundingFP Rounding

 Rounding is important
– Small errors accumulate over billions of ops

 FP rounding hardware helps
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– Compute extra guard bit beyond 23/52 bits

– Further, compute additional round bit beyond that
 Multiply may result in leading 0 bit, normalize shifts guard 

bit into product, leaving round bit for rounding

– Finally, keep sticky bit that is set whenever ‘1’ bits 
are “lost” to the right
 Differentiates between 0.5 and 0.500000000001

Floating Point AdditionFloating Point Addition

 Just like grade school
– First, align decimal points

– Then, add significands

40

, g

– Finally, normalize result

 Example 9.997 x 102 9.997000 x 102

4.631 x 10-1 0.004631 x 102

Sum 10.001631 x 102

Normalized 1.0001631 x 103

FP FP 
Adder Adder 
(F4.45)(F4.45)

0 10 1 0 1

Control

Small ALU

Sign Exponent Significand Sign Exponent Significand

Exponent 
difference

Shift right
Shift smaller 
number right  

Compare 

exponents  
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Big ALU

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or 
decrement

0 10 1

Add

Normalize

Round

FP MultiplicationFP Multiplication

 Sign: Ps = As xor Bs

 Exponent: PE = AE + BE
– Due to bias/excess, must subtract bias

e = e1 + e2
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e  e1 + e2
E = e + 1023 = e1 + e2 + 1023
E = (E1 – 1023) + (E2 – 1023) + 1023
E = E1 + E2 –1023

 Significand: PF = AF x BF
– Standard integer multiply (23b or 52b + g/r/s bits)
– Use Wallace tree of CSAs to sum partial products
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FP MultiplicationFP Multiplication

 Compute sign, exponent, significand
 Normalize

– Shift left, right by 1
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Shift left, right by 1

 Check for overflow, underflow
 Round
 Normalize again (if necessary)

SummarySummary

 Integer multiply
– Combinational

– Multicycle
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y

– Booth’s algorithm

 Integer divide
– Multicycle restoring

– Non-restoring

SummarySummary

 Floating point representation
– Normalization

– Overflow, underflow
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,

– Rounding

 Floating point add
 Floating point multiply


