
ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: PipeliningECE/CS 552: Pipelining
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill
and John P. Shen
Updated by Mikko Lipasti

PipeliningPipelining

 Forecast
– Big Picture
– Datapath
– Control
– Data Hazards

 Stalls
 Forwarding

– Control Hazards
– Exceptions

MotivationMotivation

 Single cycle implementation

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

X X

(CPI) (cycle time)

g y p
– CPI = 1

– Cycle = imem + RFrd + ALU + dmem +
RFwr + muxes + control

– E.g. 500+250+500+500+250+0+0 = 2000ps

– Time/program = P x 2ns

MulticycleMulticycle

 Multicycle implementation:

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3Instr:

i F D X M W
i+1 F D X
i+2 F D X M
i+3 F
i+4

MulticycleMulticycle

 Multicycle implementation
– CPI = 3, 4, 5

– Cycle = max(memory, RF, ALU, mux, control)

– = max(500,250,500) = 500ps

– Time/prog = P x 4 x 500 = P x 2000ps = P x 2ns

 Would like:
– CPI = 1 + overhead from hazards (later)

– Cycle = 500ps + overhead

– In practice, ~3x improvement

Big PictureBig Picture

 Instruction latency = 5 cycles
 Instruction throughput = 1/5 instr/cycle
 CPI = 5 cycles per instructionCPI 5 cycles per instruction
 Instead

– Pipelining: process instructions like a lunch
buffet

– ALL microprocessors use it
 E.g. Core i7, AMD Barcelona, ARM11

ECE 552: Introduction To Computer
Architecture 2

Big PictureBig Picture

 Instruction Latency = 5 cycles (same)
 Instruction throughput = 1 instr/cycle
 CPI = 1 cycle per instructionCPI 1 cycle per instruction
 CPI = cycle between instruction

completion = 1

Ideal PipeliningIdeal Pipelining
Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--2

n
--2 BW = ~(2/n)

 Bandwidth increases linearly with pipeline depth
 Latency increases by latch delays

Gate
DelayL Gate

DelayL Gate
DelayLn--3

n--3
n--3 BW = ~(3/n)

Example: Integer MultiplierExample: Integer Multiplier

9

 16x16 combinational multiplier
 ISCAS-85 C6288 standard benchmark

 Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

[Source: J. Hayes, Univ. of Michigan]

Example: Integer MultiplierExample: Integer Multiplier

Configuration Delay MPS Area (FF/wiring) Area Increase

Combinational 3.52ns 284 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%

4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%

8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%8 S ges 0.80 s 50 (.) 7 7 (8938/ 6) 7%

10

 Pipeline efficiency
 2-stage: nearly double throughput; marginal area cost
 4-stage: 75% efficiency; area still reasonable
 8-stage: 55% efficiency; area more than doubles

 Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

Ideal PipeliningIdeal Pipelining

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W
ii+1 F D X M W
i+2 F D X M W
i+3 F D X M W
i+4 F D X M W

Pipelining IdealismsPipelining Idealisms

 Uniform subcomputations
– Can pipeline into stages with equal delay

 Identical computations
– Can fill pipeline with identical work

 Independent computations
– No relationships between work units

 Are these practical?
– No, but can get close enough to get significant

speedup

ECE 552: Introduction To Computer
Architecture 3

ComplicationsComplications

 Datapath
– Five (or more) instructions in flight

 Control
– Must correspond to multiple instructions

 Instructions may have
– data and control flow dependences

– I.e. units of work are not independent
 One may have to stall and wait for another

DatapathDatapath

DatapathDatapath ControlControl

 Control
– Set by 5 different instructions

– Divide and conquer: carry IR down the pipeq y p p

 MIPS ISA requires the appearance of
sequential execution
– Precise exceptions

– True of most general purpose ISAs

Program DependencesProgram Dependences

i1: xxxx

i2: xxxx

i1

i2

i1:

i2:

A true dependence between
two instructions may only
involve one subcomputation
of each instruction.

i3: xxxx i3 i3:

The implied sequential precedences are
an overspecification. It is sufficient but not
necessary to ensure program correctness.

Program Data DependencesProgram Data Dependences

 True dependence (RAW)
– j cannot execute until i

produces its result
A ti d d (WAR)

)()(jRiD

)()(jDiR Anti-dependence (WAR)
– j cannot write its result until i

has read its sources
 Output dependence (WAW)

– j cannot write its result until i
has written its result

)()(jDiR

)()(jDiD

ECE 552: Introduction To Computer
Architecture 4

Control DependencesControl Dependences

 Conditional branches
– Branch must execute to determine which

instruction to fetch next

– Instructions following a conditional branch are
control dependent on the branch instruction

Example (quicksort/MIPS)Example (quicksort/MIPS)

for (; (j < high) && (array[j] < array[low]) ; ++j);
$10 = j
$9 = high
$6 = array
$8 = low

bge done, $10, $9
mul $15, $10, 4
addu $24, $6, $15
lw $25, 0($24)
mul $13, $8, 4
addu $14, $6, $13
lw $15, 0($14)
bge done, $25, $15

cont:
addu $10, $10, 1
. . .

done:
addu $11, $11, -1

Resolution of Pipeline HazardsResolution of Pipeline Hazards

 Pipeline hazards
– Potential violations of program dependences

– Must ensure program dependences are not violated

d l i Hazard resolution
– Static: compiler/programmer guarantees correctness

– Dynamic: hardware performs checks at runtime

 Pipeline interlock
– Hardware mechanism for dynamic hazard resolution

– Must detect and enforce dependences at runtime

Pipeline HazardsPipeline Hazards

 Necessary conditions:
– WAR: write stage earlier than read stage

 Is this possible in IF-RD-EX-MEM-WB ?

i li h i– WAW: write stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB ?

– RAW: read stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB?

 If conditions not met, no need to resolve
 Check for both register and memory

Pipeline Hazard AnalysisPipeline Hazard Analysis

RD

IFIF

ID

RD

D

S1

W/RWData

Register
File

WAdd

RAdd1

 Memory hazards
– RAW: Yes/No?

– WAR: Yes/No?

– WAW: Yes/No?

ALUALU

MEM

WB

S2 RData2
RAdd2
RData1 Register hazards

– RAW: Yes/No?

– WAR: Yes/No?

– WAW: Yes/No?

RAW HazardRAW Hazard

 Earlier instruction produces a value used by a
later instruction:
– add $1, $2, $3
– sub $4, $5, $1sub $4, $5, $1

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

add F D X M W
sub F D X M W

ECE 552: Introduction To Computer
Architecture 5

RAW Hazard RAW Hazard -- StallStall

 Detect dependence and stall:
– add $1, $2, $3
– sub $4, $5, $1

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

add F D X M W
sub F D X M W

Control DependenceControl Dependence

 One instruction affects which executes next
– sw $4, 0($5)
– bne $2, $3, loop
– sub $6 $7 $8– sub $6, $7, $8

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

sw F D X M W
bne F D X M W
sub F D X M W

Control Dependence Control Dependence -- StallStall

 Detect dependence and stall
– sw $4, 0($5)
– bne $2, $3, loop
– sub $6 $7 $8– sub $6, $7, $8

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

sw F D X M W
bne F D X M W
sub F D X M W

Pipelined DatapathPipelined Datapath

 Start with single-cycle datapath
 Pipelined execution

– Assume each instruction has its own datapath
But each instruction uses a different part in every– But each instruction uses a different part in every
cycle

– Multiplex all on to one datapath
– Latches separate cycles (like multicycle)

 Ignore hazards for now
– Data
– control

Pipelined Pipelined DatapathDatapath

4 Add Add
result

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

ID/EX

Instruction
memory

Address

32

0

result

Shift
left 2

In
st

ru
ct

io
n

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

Data
memory

Address

Pipelined DatapathPipelined Datapath

 Instruction flow
– add and load

– Write of registersg

– Pass register specifiers

 Any info needed by a later stage gets
passed down the pipeline
– E.g. store value through EX

ECE 552: Introduction To Computer
Architecture 6

Pipelined ControlPipelined Control

 IF and ID
– None

 EX
– ALUop, ALUsrc, RegDst

 MEM
– Branch, MemRead, MemWrite

 WB
– MemtoReg, RegWrite

DatapathDatapath Control SignalsControl Signals

Branch
4

IF/ID ID/EX EX/MEM MEM/WB

PCSrc

Add
Add

result

Shift

Add

0

1

M
u
x

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

RegDst

ALUSrc

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

MemWrite

Address

Data
memory

Zero

left 2

ALU
result

ALU

Zero

0

1

M
u
x

Pipelined ControlPipelined Control

Control

EX

M

WB

M

WB

WB

Instruction

IF/ID ID/EX EX/MEM MEM/WB

All TogetherAll Together

Add

Branch

4 Add Add
result

rit
e

Control

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC

Instruction
memory

In
st

ru
ct

io
n

Instruction
[20– 16]

M
em

to
R

e
g

ALUOp

Branch

RegDst

ALUSrc

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
r

MemRead

ALU

Instruction
[15– 11]

6

M
e

m
W

ri
te

Address
Data

memory

Address

Pipelined ControlPipelined Control

 Controlled by different instructions
 Decode instructions and pass the signals

down the pipep p
 Control sequencing is embedded in the

pipeline
– No explicit FSM

– Instead, distributed FSM

PipeliningPipelining

 Not too complex yet
– Data hazards

– Control hazards

– Exceptions

ECE 552: Introduction To Computer
Architecture 7

RAW HazardsRAW Hazards

 Must first detect RAW hazards
– Pipeline analysis proves that WAR/WAW don’t occur

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2

RAW HazardsRAW Hazards

 Not all hazards because
– WriteRegister not used (e.g. sw)

– ReadRegister not used (e.g. addi, jump)g (g , j p)

– Do something only if necessary

RAW HazardsRAW Hazards

 Hazard Detection Unit
– Several 5-bit (or 6-bit) comparators

 Response? Stall pipelinep p p
– Instructions in IF and ID stay

– IF/ID pipeline latch not updated

– Send ‘nop’ down pipeline (called a bubble)

– PCWrite, IF/IDWrite, and nop mux

RAW Hazard ForwardingRAW Hazard Forwarding

 A better response – forwarding
– Also called bypassing

 Comparators ensure register is read after it p g
is written

 Instead of stalling until write occurs
– Use mux to select forwarded value rather than

register value

– Control mux with hazard detection logic

Forwarding Paths Forwarding Paths
(ALU instructions)(ALU instructions)

IF

ID

i+1: i+2: i+3:RD R1 R1 R1

© 2005 Mikko Lipasti
41

FORWARDING

b

ALU

PATHS

a
i: R1

i: R1

i: R1

(i i+1)

Forwarding

via Path a

i+1:

i+1:

i+2:

(i i+2)

Forwarding
via Path b

(i i+3)

i writes R1
before i+3
reads R1

ALU

MEM

WB

R1 R1c

Write before Read RFWrite before Read RF
 Register file design

– 2-phase clocks common

– Write RF on first phase

– Read RF on second phase

 Hence, same cycle:
– Write $1

– Read $1

 No bypass needed
– If read before write or DFF-based, need bypass

ECE 552: Introduction To Computer
Architecture 8

Register
File

•

•
•

•

•

• •

Comp Comp Comp Comp

•

ALU ALU ForwardingForwarding

ALU

1 0 1 0

1 0 1 0

ALU

Comp Comp Comp Comp

•

•

•

•

© 2005 Mikko Lipasti
43

Forwarding PathsForwarding Paths
(Load instructions)(Load instructions)IF

ID

e

i+1: i+1: i+2:
RD

ALUd

R1 R1 R1

© 2005 Mikko Lipasti
44

(i i+2)
(i i+1)

e
LOAD

FORWARDING

PATH(s)

i+1:
ALU

MEM

WB

i:R1

i:R1

i:R1

(i i+1)

Stall i+1 Forwarding

via Path d

i writes R1
before i+2
reads R1

d
R1

MEM[]

MEM[]

MEM[]

Implementation of Load ForwardingImplementation of Load Forwarding

Register
File

•

•
•

•

•

• •

CompComp CompComp
•

•
Da
ta

Add
D-Cache

•

r

•

ALU

1 0 1 0

1 0 1 0

ALU

•

•

1 0 1 0

Load

Stall
IF,ID,RD

•

•

LOAD

Control Flow HazardsControl Flow Hazards

 Control flow instructions
– branches, jumps, jals, returns

– Can’t fetch until branch outcome known

– Too late for next IF

Control Flow HazardsControl Flow Hazards

 What to do?
– Always stall

– Easy to implementy p

– Performs poorly

– 1/6th instructions are branches, each branch
takes 3 cycles

– CPI = 1 + 3 x 1/6 = 1.5 (lower bound)

Control Flow HazardsControl Flow Hazards

 Predict branch not taken
 Send sequential instructions down pipeline
 Kill instructions later if incorrectKill instructions later if incorrect
 Must stop memory accesses and RF writes
 Late flush of instructions on misprediction

– Complex

– Global signal (wire delay)

ECE 552: Introduction To Computer
Architecture 9

Control Flow HazardsControl Flow Hazards

 Even better but more complex
– Predict taken
– Predict both (eager execution)
– Predict one or the other dynamically

 Adapt to program branch patterns
 Lots of chip real estate these days

– Pentium III, 4, Alpha 21264

 Current research topic

– More later (lecture on branch prediction)

Control Flow HazardsControl Flow Hazards

 Another option: delayed branches
– Always execute following instruction

– “delay slot” (later example on MIPS pipeline)y (p p p)

– Put useful instruction there, otherwise ‘nop’

 A mistake to cement this into ISA
– Just a stopgap (one cycle, one instruction)

– Superscalar processors (later)
 Delay slot just gets in the way (special case)

Exceptions and PipeliningExceptions and Pipelining

 add $1, $2, $3 overflows
 A surprise branch

– Earlier instructions flow to completionEarlier instructions flow to completion

– Kill later instructions

– Save PC in EPC, set PC to EX handler, etc.

 Costs a lot of designer sanity
– 554 teams that try this sometimes fail

ExceptionsExceptions

 Even worse: in one cycle
– I/O interrupt
– User trap to OS (EX)
– Illegal instruction (ID)
– Arithmetic overflow
– Hardware error
– Etc.

 Interrupt priorities must be supported

ReviewReview

 Big Picture
 Datapath
 Control

– Data hazards
 Stalls
 Forwarding or bypassing

– Control flow hazards
 Branch prediction

 Exceptions

