
ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: PipeliningECE/CS 552: Pipelining
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill
and John P. Shen
Updated by Mikko Lipasti

PipeliningPipelining

 Forecast
– Big Picture
– Datapath
– Control
– Data Hazards

 Stalls
 Forwarding

– Control Hazards
– Exceptions

MotivationMotivation

 Single cycle implementation

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

X X

(CPI) (cycle time)

g y p
– CPI = 1

– Cycle = imem + RFrd + ALU + dmem +
RFwr + muxes + control

– E.g. 500+250+500+500+250+0+0 = 2000ps

– Time/program = P x 2ns

MulticycleMulticycle

 Multicycle implementation:

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3Instr:

i F D X M W
i+1 F D X
i+2 F D X M
i+3 F
i+4

MulticycleMulticycle

 Multicycle implementation
– CPI = 3, 4, 5

– Cycle = max(memory, RF, ALU, mux, control)

– = max(500,250,500) = 500ps

– Time/prog = P x 4 x 500 = P x 2000ps = P x 2ns

 Would like:
– CPI = 1 + overhead from hazards (later)

– Cycle = 500ps + overhead

– In practice, ~3x improvement

Big PictureBig Picture

 Instruction latency = 5 cycles
 Instruction throughput = 1/5 instr/cycle
 CPI = 5 cycles per instructionCPI 5 cycles per instruction
 Instead

– Pipelining: process instructions like a lunch
buffet

– ALL microprocessors use it
 E.g. Core i7, AMD Barcelona, ARM11

ECE 552: Introduction To Computer
Architecture 2

Big PictureBig Picture

 Instruction Latency = 5 cycles (same)
 Instruction throughput = 1 instr/cycle
 CPI = 1 cycle per instructionCPI 1 cycle per instruction
 CPI = cycle between instruction

completion = 1

Ideal PipeliningIdeal Pipelining
Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--2

n
--2 BW = ~(2/n)

 Bandwidth increases linearly with pipeline depth
 Latency increases by latch delays

Gate
DelayL Gate

DelayL Gate
DelayLn--3

n--3
n--3 BW = ~(3/n)

Example: Integer MultiplierExample: Integer Multiplier

9

 16x16 combinational multiplier
 ISCAS-85 C6288 standard benchmark

 Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

[Source: J. Hayes, Univ. of Michigan]

Example: Integer MultiplierExample: Integer Multiplier

Configuration Delay MPS Area (FF/wiring) Area Increase

Combinational 3.52ns 284 7535 (--/1759)

2 Stages 1.87ns 534 (1.9x) 8725 (1078/1870) 16%

4 Stages 1.17ns 855 (3.0x) 11276 (3388/2112) 50%

8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%8 S ges 0.80 s 50 (.) 7 7 (8938/ 6) 7%

10

 Pipeline efficiency
 2-stage: nearly double throughput; marginal area cost
 4-stage: 75% efficiency; area still reasonable
 8-stage: 55% efficiency; area more than doubles

 Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

Ideal PipeliningIdeal Pipelining

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W
ii+1 F D X M W
i+2 F D X M W
i+3 F D X M W
i+4 F D X M W

Pipelining IdealismsPipelining Idealisms

 Uniform subcomputations
– Can pipeline into stages with equal delay

 Identical computations
– Can fill pipeline with identical work

 Independent computations
– No relationships between work units

 Are these practical?
– No, but can get close enough to get significant

speedup

ECE 552: Introduction To Computer
Architecture 3

ComplicationsComplications

 Datapath
– Five (or more) instructions in flight

 Control
– Must correspond to multiple instructions

 Instructions may have
– data and control flow dependences

– I.e. units of work are not independent
 One may have to stall and wait for another

DatapathDatapath

DatapathDatapath ControlControl

 Control
– Set by 5 different instructions

– Divide and conquer: carry IR down the pipeq y p p

 MIPS ISA requires the appearance of
sequential execution
– Precise exceptions

– True of most general purpose ISAs

Program DependencesProgram Dependences

i1: xxxx

i2: xxxx

i1

i2

i1:

i2:

A true dependence between
two instructions may only
involve one subcomputation
of each instruction.

i3: xxxx i3 i3:

The implied sequential precedences are
an overspecification. It is sufficient but not
necessary to ensure program correctness.

Program Data DependencesProgram Data Dependences

 True dependence (RAW)
– j cannot execute until i

produces its result
A ti d d (WAR)

)()(jRiD

)()(jDiR Anti-dependence (WAR)
– j cannot write its result until i

has read its sources
 Output dependence (WAW)

– j cannot write its result until i
has written its result

)()(jDiR

)()(jDiD

ECE 552: Introduction To Computer
Architecture 4

Control DependencesControl Dependences

 Conditional branches
– Branch must execute to determine which

instruction to fetch next

– Instructions following a conditional branch are
control dependent on the branch instruction

Example (quicksort/MIPS)Example (quicksort/MIPS)

for (; (j < high) && (array[j] < array[low]) ; ++j);
$10 = j
$9 = high
$6 = array
$8 = low

bge done, $10, $9
mul $15, $10, 4
addu $24, $6, $15
lw $25, 0($24)
mul $13, $8, 4
addu $14, $6, $13
lw $15, 0($14)
bge done, $25, $15

cont:
addu $10, $10, 1
. . .

done:
addu $11, $11, -1

Resolution of Pipeline HazardsResolution of Pipeline Hazards

 Pipeline hazards
– Potential violations of program dependences

– Must ensure program dependences are not violated

d l i Hazard resolution
– Static: compiler/programmer guarantees correctness

– Dynamic: hardware performs checks at runtime

 Pipeline interlock
– Hardware mechanism for dynamic hazard resolution

– Must detect and enforce dependences at runtime

Pipeline HazardsPipeline Hazards

 Necessary conditions:
– WAR: write stage earlier than read stage

 Is this possible in IF-RD-EX-MEM-WB ?

i li h i– WAW: write stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB ?

– RAW: read stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB?

 If conditions not met, no need to resolve
 Check for both register and memory

Pipeline Hazard AnalysisPipeline Hazard Analysis

RD

IFIF

ID

RD

D

S1

W/RWData

Register
File

WAdd

RAdd1

 Memory hazards
– RAW: Yes/No?

– WAR: Yes/No?

– WAW: Yes/No?

ALUALU

MEM

WB

S2 RData2
RAdd2
RData1 Register hazards

– RAW: Yes/No?

– WAR: Yes/No?

– WAW: Yes/No?

RAW HazardRAW Hazard

 Earlier instruction produces a value used by a
later instruction:
– add $1, $2, $3
– sub $4, $5, $1sub $4, $5, $1

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

add F D X M W
sub F D X M W

ECE 552: Introduction To Computer
Architecture 5

RAW Hazard RAW Hazard -- StallStall

 Detect dependence and stall:
– add $1, $2, $3
– sub $4, $5, $1

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

add F D X M W
sub F D X M W

Control DependenceControl Dependence

 One instruction affects which executes next
– sw $4, 0($5)
– bne $2, $3, loop
– sub $6 $7 $8– sub $6, $7, $8

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

sw F D X M W
bne F D X M W
sub F D X M W

Control Dependence Control Dependence -- StallStall

 Detect dependence and stall
– sw $4, 0($5)
– bne $2, $3, loop
– sub $6 $7 $8– sub $6, $7, $8

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

sw F D X M W
bne F D X M W
sub F D X M W

Pipelined DatapathPipelined Datapath

 Start with single-cycle datapath
 Pipelined execution

– Assume each instruction has its own datapath
But each instruction uses a different part in every– But each instruction uses a different part in every
cycle

– Multiplex all on to one datapath
– Latches separate cycles (like multicycle)

 Ignore hazards for now
– Data
– control

Pipelined Pipelined DatapathDatapath

4 Add Add
result

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

ID/EX

Instruction
memory

Address

32

0

result

Shift
left 2

In
st

ru
ct

io
n

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

Data
memory

Address

Pipelined DatapathPipelined Datapath

 Instruction flow
– add and load

– Write of registersg

– Pass register specifiers

 Any info needed by a later stage gets
passed down the pipeline
– E.g. store value through EX

ECE 552: Introduction To Computer
Architecture 6

Pipelined ControlPipelined Control

 IF and ID
– None

 EX
– ALUop, ALUsrc, RegDst

 MEM
– Branch, MemRead, MemWrite

 WB
– MemtoReg, RegWrite

DatapathDatapath Control SignalsControl Signals

Branch
4

IF/ID ID/EX EX/MEM MEM/WB

PCSrc

Add
Add

result

Shift

Add

0

1

M
u
x

PC

Instruction
memory

Address

In
st

ru
ct

io
n

Instruction
[20– 16]

MemtoReg

ALUOp

RegDst

ALUSrc

16 32
Instruction
[15– 0]

0

0
Registers

Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1
Write

data

Read

data M
u
x

1

ALU
control

RegWrite

MemRead

Instruction
[15– 11]

6

MemWrite

Address

Data
memory

Zero

left 2

ALU
result

ALU

Zero

0

1

M
u
x

Pipelined ControlPipelined Control

Control

EX

M

WB

M

WB

WB

Instruction

IF/ID ID/EX EX/MEM MEM/WB

All TogetherAll Together

Add

Branch

4 Add Add
result

rit
e

Control

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC

Instruction
memory

In
st

ru
ct

io
n

Instruction
[20– 16]

M
em

to
R

e
g

ALUOp

Branch

RegDst

ALUSrc

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
r

MemRead

ALU

Instruction
[15– 11]

6

M
e

m
W

ri
te

Address
Data

memory

Address

Pipelined ControlPipelined Control

 Controlled by different instructions
 Decode instructions and pass the signals

down the pipep p
 Control sequencing is embedded in the

pipeline
– No explicit FSM

– Instead, distributed FSM

PipeliningPipelining

 Not too complex yet
– Data hazards

– Control hazards

– Exceptions

ECE 552: Introduction To Computer
Architecture 7

RAW HazardsRAW Hazards

 Must first detect RAW hazards
– Pipeline analysis proves that WAR/WAW don’t occur

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2

RAW HazardsRAW Hazards

 Not all hazards because
– WriteRegister not used (e.g. sw)

– ReadRegister not used (e.g. addi, jump)g (g , j p)

– Do something only if necessary

RAW HazardsRAW Hazards

 Hazard Detection Unit
– Several 5-bit (or 6-bit) comparators

 Response? Stall pipelinep p p
– Instructions in IF and ID stay

– IF/ID pipeline latch not updated

– Send ‘nop’ down pipeline (called a bubble)

– PCWrite, IF/IDWrite, and nop mux

RAW Hazard ForwardingRAW Hazard Forwarding

 A better response – forwarding
– Also called bypassing

 Comparators ensure register is read after it p g
is written

 Instead of stalling until write occurs
– Use mux to select forwarded value rather than

register value

– Control mux with hazard detection logic

Forwarding Paths Forwarding Paths
(ALU instructions)(ALU instructions)

IF

ID

i+1: i+2: i+3:RD R1 R1 R1

© 2005 Mikko Lipasti
41

FORWARDING

b

ALU

PATHS

a
i: R1

i: R1

i: R1

(i i+1)

Forwarding

via Path a

i+1:

i+1:

i+2:

(i i+2)

Forwarding
via Path b

(i i+3)

i writes R1
before i+3
reads R1

ALU

MEM

WB

R1 R1c

Write before Read RFWrite before Read RF
 Register file design

– 2-phase clocks common

– Write RF on first phase

– Read RF on second phase

 Hence, same cycle:
– Write $1

– Read $1

 No bypass needed
– If read before write or DFF-based, need bypass

ECE 552: Introduction To Computer
Architecture 8

Register
File

•

•
•

•

•

• •

Comp Comp Comp Comp

•

ALU ALU ForwardingForwarding

ALU

1 0 1 0

1 0 1 0

ALU

Comp Comp Comp Comp

•

•

•

•

© 2005 Mikko Lipasti
43

Forwarding PathsForwarding Paths
(Load instructions)(Load instructions)IF

ID

e

i+1: i+1: i+2:
RD

ALUd

R1 R1 R1

© 2005 Mikko Lipasti
44

(i i+2)
(i i+1)

e
LOAD

FORWARDING

PATH(s)

i+1:
ALU

MEM

WB

i:R1

i:R1

i:R1

(i i+1)

Stall i+1 Forwarding

via Path d

i writes R1
before i+2
reads R1

d
R1

MEM[]

MEM[]

MEM[]

Implementation of Load ForwardingImplementation of Load Forwarding

Register
File

•

•
•

•

•

• •

CompComp CompComp
•

•
Da
ta

Add
D-Cache

•

r

•

ALU

1 0 1 0

1 0 1 0

ALU

•

•

1 0 1 0

Load

Stall
IF,ID,RD

•

•

LOAD

Control Flow HazardsControl Flow Hazards

 Control flow instructions
– branches, jumps, jals, returns

– Can’t fetch until branch outcome known

– Too late for next IF

Control Flow HazardsControl Flow Hazards

 What to do?
– Always stall

– Easy to implementy p

– Performs poorly

– 1/6th instructions are branches, each branch
takes 3 cycles

– CPI = 1 + 3 x 1/6 = 1.5 (lower bound)

Control Flow HazardsControl Flow Hazards

 Predict branch not taken
 Send sequential instructions down pipeline
 Kill instructions later if incorrectKill instructions later if incorrect
 Must stop memory accesses and RF writes
 Late flush of instructions on misprediction

– Complex

– Global signal (wire delay)

ECE 552: Introduction To Computer
Architecture 9

Control Flow HazardsControl Flow Hazards

 Even better but more complex
– Predict taken
– Predict both (eager execution)
– Predict one or the other dynamically

 Adapt to program branch patterns
 Lots of chip real estate these days

– Pentium III, 4, Alpha 21264

 Current research topic

– More later (lecture on branch prediction)

Control Flow HazardsControl Flow Hazards

 Another option: delayed branches
– Always execute following instruction

– “delay slot” (later example on MIPS pipeline)y (p p p)

– Put useful instruction there, otherwise ‘nop’

 A mistake to cement this into ISA
– Just a stopgap (one cycle, one instruction)

– Superscalar processors (later)
 Delay slot just gets in the way (special case)

Exceptions and PipeliningExceptions and Pipelining

 add $1, $2, $3 overflows
 A surprise branch

– Earlier instructions flow to completionEarlier instructions flow to completion

– Kill later instructions

– Save PC in EPC, set PC to EX handler, etc.

 Costs a lot of designer sanity
– 554 teams that try this sometimes fail

ExceptionsExceptions

 Even worse: in one cycle
– I/O interrupt
– User trap to OS (EX)
– Illegal instruction (ID)
– Arithmetic overflow
– Hardware error
– Etc.

 Interrupt priorities must be supported

ReviewReview

 Big Picture
 Datapath
 Control

– Data hazards
 Stalls
 Forwarding or bypassing

– Control flow hazards
 Branch prediction

 Exceptions

