ECE/CS 552: Pipelining

Pipelining

Instructor: Mikko H Lipasti e Forecast
— Big Picture
Fall 2010 — Datapath
University of Wisconsin-Madison — Control
— Data Hazards
Lecture notes based on set created by Mark Hill Stalls
and John P. Shen .
Updated by Mikko Lipasti Forwarding
— Control Hazards
— Exceptions
Motivation Multicycle
Instructions Cycles Time
Program Instruction Cycle e Multicycle implementation:
de si CPI le ti
(codesize) —(CP) (eycletime) Cycle:[1]2]3]415]6]7]8 9 L]1]1]1
e Single cycle implementation Instr: 0123
—CPI=1 i F |D[X|M|W
— Cycle =imem + RFrd + ALU + dmem + i+1 F|D|X
RFwr + muxes + control i+2 FID|X|M
— E.g. 500+250+500+500+250+0+0 = 2000ps i+3 F
— Time/program = P x 2ns i+4

Multicycle

e Multicycle implementation

- CPI=3,4,5

— Cycle =max(memory, RF, ALU, mux, control)

- = max(500,250,500) = 500ps

— Time/prog = P x 4 x 500 = P x 2000ps = P x 2ns
e Would like:

— CPI =1 + overhead from hazards (later)

— Cycle = 500ps + overhead

— In practice, ~3x improvement

Big Picture

e Instruction latency = 5 cycles

e Instruction throughput = 1/5 instr/cycle
e CPI =5 cycles per instruction

e Instead

— Pipelining: process instructions like a lunch
buffet

— ALL microprocessors use it
E.g. Core i7, AMD Barcelona, ARM11

ECE 552:

Introduction To Computer

Architecture

Big Picture

e Instruction Latency = 5 cycles (same)
e Instruction throughput = 1 instr/cycle
e CPI =1 cycle per instruction

e CPI = cycle between instruction
completion=1

Ideal Pipelining

1— Sk b5 BW = ~(1/n)
N Gat n
‘—.—{ 3 Delay I——!» | 5 5% n_» BW = ~(2/n)
n n N Gats
4.3- Sealtaeyl"‘ 3’[()3e }%l»ﬂ|§ D(ﬁ;ylF BW = ~(3/n)

e Bandwidth increases linearly with pipeline depth
e Latency increases by latch delays

Example: Integer Multiplier

[Source: . Hayes, Univ. of Michigan]

e 16x16 combinational multiplier
e |SCAS-85 C6288 standard benchmark
e Tools: Synopsys DC/LSI Logic 110nm gflxp ASIC

Example: Integer Multiplier

Combinational 3.52ns 284 7535 (--/1759)

2 Stages 187ns 534 (1.9x) 8725 (1078/1870) 16%
4 Stages 117ns 855(3.0x) 11276 (3388/2112) 50%
8 Stages 0.80ns 1250 (4.4x) 17127 (8938/2612) 127%

o Pipeline efficiency
e 2-stage: nearly double throughput; marginal area cost
e 4-stage: 75% efficiency; area still reasonable
e 8-stage: 55% efficiency; area more than doubles

e Tools: Synopsys DC/LSI Logic 110nm gfixp ASIC

Ideal Pipelining

Cycle: (1 |2 |3(4(5(6(7(8]9(1|1|1]1
Instr: 011213
i F [D|X | M|W,|

i+1 F|D| XMW,

i+2 F DX MW

i+3 F D |X|M|W,|

i+4 F DX |M|W

Pipelining Idealisms

e Uniform subcomputations
— Can pipeline into stages with equal delay
e |dentical computations
— Can fill pipeline with identical work
e Independent computations
— No relationships between work units
e Are these practical?

— No, but can get close enough to get significant
speedup

ECE 552: Introduction To Computer
Architecture

Complications

e Datapath

— Five (or more) instructions in flight
e Control

— Must correspond to multiple instructions
e Instructions may have

— data and control flow dependences

— l.e. units of work are not independent
One may have to stall and wait for another

Datapath

IF: Instruction fetch | 1D Instruction decade! Ex: Exacutel MEM: Memory access WE: Write back
register fi read address calculation

Time (in clock cycles)

Program ! |
execution ceropocer el ces ces cee «“r
order |
(in instructions) i

b §1, 100(50)

hw $2, 20050)

b $3, 30030

Control

e Control
— Set by 5 different instructions
— Divide and conquer: carry IR down the pipe

o MIPS ISA requires the appearance of
sequential execution

— Precise exceptions
— True of most general purpose ISAs

Program Dependences

A true dependence between
two instructions may only
involve one subcomputation
of each instruction.

ilixxxx (D i T

20 (12) i2: E ,
i3: XXX (3 i3: E

The implied sequential precedences are
an overspecification. It is sufficient but not
necessary to ensure program correctness

Program Data Dependences

e True dependence (RAW) D(i)nR(j) # ¢
— j cannot execute until i
produces its result

e Anti-dependence (WAR) R(i)nD(j)# ¢
— j cannot write its result until i
has read its sources
o Output dependence (WAW) D(i)nD(j) # ¢
— j cannot write its result until i
has written its result

ECE 552: Introduction To Computer
Architecture

Control Dependences

e Conditional branches

— Branch must execute to determine which
instruction to fetch next

— Instructions following a conditional branch are
control dependent on the branch instruction

Example (quicksort/MIPS)

for (; (j < high) && (array[j] <arrayflow]) ; ++);
$10 = j
$9 = high
$6 = array
$8 = low
bge

mul

addu

w

mul

addu

Iw

B

bge 025, %
cont: \

addu $10, $10, T
done:

addu $11, $11, -

Resolution of Pipeline Hazards

e Pipeline hazards
— Potential violations of program dependences
— Must ensure program dependences are not violated
e Hazard resolution
— Static: compiler/programmer guarantees correctness
— Dynamic: hardware performs checks at runtime
e Pipeline interlock
— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependences at runtime

Pipeline Hazards

e Necessary conditions:
— WAR: write stage earlier than read stage
Is this possible in IF-RD-EX-MEM-WB ?
— WAW: write stage earlier than write stage
Is this possible in IF-RD-EX-MEM-WB ?
— RAW: read stage earlier than write stage
Is this possible in IF-RD-EX-MEM-WB?
e |If conditions not met, no need to resolve
e Check for both register and memory

Pipeline Hazard Analysis

e Memory hazards
- RAW: Yes/No?
— WAR: Yes/No?
- WAW: Yes/No?
e Register hazards
- RAW: Yes/No?
— WAR: Yes/No?
- WAW: Yes/No?

RAW Hazard

e Earlier instruction produces a value used by a
later instruction:

- add $1, 2, $3

— sub $4, $5, $1
Cycle:|1|2|13|14|5(6(7(8/9]1(11]1
Instr: 011(23
add |F [D[x|mlw
sub F DX [M[wW

ECE 552: Introduction To Computer
Architecture

RAW Hazard - Stall

e Detect dependence and stall:
- add $1, $2, $3
- sub $4, $5;$1

Cycle:|1|2|3|4|5(6(7 (819
Instr:

add F |D|X|M|W,

sub F|D|X|M

Control Dependence

e One instruction affects which executes next
- sw $4, 0($5)
— bne $2, $3, loop
— sub $6, $7, $8

Cycle: |1 |2 |3 |4
Instr: 0

(&1
o
~
©
©
-
(RN

SW F|D|X|M

bne F|D

NEE
£z

sub F1D

e Detect dependence and stall
— sw $4, 0($5)
- bne $2, $3, loop
- sub $6, $7, $8

Control Dependence - Stall

Cycle: |1 |2 |3 |4
Instr:

o
(2]
~
©
©

Sw F|D|X|M

bne F|D|X

NEE
=

sub

o
X
<
3

Pipelined Datapath

e Start with single-cycle datapath
e Pipelined execution
— Assume each instruction has its own datapath

— But each instruction uses a different part in every
cycle

— Multiplex all on to one datapath

— Latches separate cycles (like multicycle)
e Ignore hazards for now

- Data

- control

Pipelined Datapath

nnnnnn

Pipelined Datapath

e Instruction flow
—add and load
— Write of registers
— Pass register specifiers

e Any info needed by a later stage gets
passed down the pipeline

— E.g. store value through EX

ECE 552: Introduction To Computer
Architecture

Pipelined Control

Datapath Control Signals
e |[Fand ID

— None

o EX .

— ALUop, ALUsrc, RegDst 1l
e MEM s

— Branch, MemRead, MemWrite
¢ WB

— MemtoReg, RegWrite

Pipelined Control All Together

WB|

Instruction

IFID ID/EX EXIMEM

Pipelined Control Pipelining
e Controlled by different instructions

e Not too complex yet
e Decode instructions and pass the signals — Data hazards
down the pipe

— Control hazards
e Control sequencing is embedded in the — Exceptions
pipeline

— No explicit FSM
— Instead, distributed FSM

ECE 552: Introduction To Computer
Architecture

RAW Hazards

e Must first detect RAW hazards
— Pipeline analysis proves that WAR/WAW don’t occur

ID/EX.WriteRegister = IF/ID.ReadRegisterl
ID/EX.WriteRegister = IF/ID.ReadRegister2
EX/MEM.WriteRegister = IF/ID.ReadRegisterl
EX/MEM.WriteRegister = IF/ID.ReadRegister2
MEM/WB.WriteRegister = IF/ID.ReadRegisterl
MEM/WB.WriteRegister = IF/ID.ReadRegister2

RAW Hazards

e Not all hazards because
— WriteRegister not used (e.g. sw)
— ReadRegister not used (e.g. addi, jump)
— Do something only if necessary

RAW Hazards

e Hazard Detection Unit
— Several 5-bit (or 6-bit) comparators
o Response? Stall pipeline
— Instructions in IF and ID stay
— IF/ID pipeline latch not updated
— Send ‘nop’ down pipeline (called a bubble)
— PCWrite, IF/IDWrite, and nop mux

RAW Hazard Forwarding

e A better response — forwarding
— Also called bypassing

e Comparators ensure register is read after it
is written

e Instead of stalling until write occurs

— Use mux to select forwarded value rather than
register value

— Control mux with hazard detection logic

Forwarding Paths

(

ALU instructions)
1

b la ALU

ALU MEM

/ARDING

PATHS i

A1 -

ffffffff (1 —>it1) (i —=i+2))]
Forwarding Forwarding :3 writes R1
" ia Path b efore i+3
via Path a via Pal e ni

© 2005 Mikko Lipasti

41

Write before Read RF

e Register file design
- 2-phase clocks common
— Write RF on first phase
— Read RF on second phase
e Hence, same cycle:
- Write $1
- Read $1
e No bypass needed
— If read before write or DFF-based, need bypass

ECE 552: Introduction To Computer
Architecture

Forwarding Paths

ALU Forwarding (Load instructions)

TEH:F

Register
File

i+l: <«— Rl i+1: *— Rl |i+2: «— Rl

‘C?wlfp :?nfaq G iRl < memg| —— il R
i |
‘ i:R1 <= MEM[]
i:R1 <— MEM[]
(> i+1) (ii+1) (>ix2)
Stall i+1 Forwarding Ib\gfronrzs E;
via Path d reads R1
© 2005 Mikko Lipasti T 4 © 2005 Mikko Lipasti
Implementation of Load Forwarding
g Wy Control Flow Hazards
.t Register
Igile
H |) e Control flow instructions
e | | i i
T— — L|p-Cache — branches, jumps, jals, returns
E@“ TV : — Can’t fetch until branch outcome known
DR de s
T |ty sty - Too late for next IF
=t
Y
ALU
Load —
Stall J
IFID,RD —?":l
Control Flow Hazards Control Flow Hazards
e What to do? e Predict branch not taken
— Always stall e Send sequential instructions down pipeline
— Easy to implement o Kill instructions later if incorrect

— Performs poorly

— 1/6t instructions are branches, each branch
takes 3 cycles

- CPI=1+3x1/6 =1.5 (lower bound)

e Must stop memory accesses and RF writes
o Late flush of instructions on misprediction
— Complex
— Global signal (wire delay)

ECE 552: Introduction To Computer
Architecture

Control Flow Hazards

e Even better but more complex

— Predict taken

— Predict both (eager execution)

— Predict one or the other dynamically
Adapt to program branch patterns
Lots of chip real estate these days

— Pentium 11, 4, Alpha 21264

Current research topic

— More later (lecture on branch prediction)

Control Flow Hazards

e Another option: delayed branches

— Always execute following instruction

— “delay slot” (later example on MIPS pipeline)

— Put useful instruction there, otherwise ‘nop’
e A mistake to cement this into ISA

— Just a stopgap (one cycle, one instruction)

— Superscalar processors (later)

Delay slot just gets in the way (special case)

Exceptions and Pipelining

e add $1, $2, $3 overflows
e A surprise branch

— Earlier instructions flow to completion
— Kill later instructions

— Save PC in EPC, set PC to EX handler, etc.

e Costs a lot of designer sanity
— 554 teams that try this sometimes fail

Exceptions

e Even worse: in one cycle
— 1/O interrupt
— User trap to OS (EX)
— Illegal instruction (D)
— Arithmetic overflow
— Hardware error
- Etc.

e Interrupt priorities must be supported

Review

e Big Picture
e Datapath
e Control
— Data hazards
Stalls
Forwarding or bypassing
— Control flow hazards
Branch prediction
e Exceptions

ECE 552: Introduction To Computer
Architecture

