
ECE 552: Introduction To Computer Architecture 1

ECE/CS 552: Introduction to ECE/CS 552: Introduction to
Superscalar ProcessorsSuperscalar Processors

Instructor: Mikko H Lipasti

llFall 2010
University of Wisconsin-Madison

Lecture notes partially based on notes by John P.
Shen

Limitations of Scalar PipelinesLimitations of Scalar Pipelines

 Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1

 Inefficient unified pipeline

© Shen, Lipasti
2

p p
– Long latency for each instruction

 Rigid pipeline stall policy
– One stalled instruction stalls all newer

instructions

Parallel PipelinesParallel Pipelines

© Shen, Lipasti
3

(a) No Parallelism (b) Temporal Parallelism

(c) Spatial Parallelism

(d) Parallel Pipeline

Intel Pentium Parallel PipelineIntel Pentium Parallel Pipeline

IF

D1

IF IF

D1 D1

© Shen, Lipasti
4

D2

EX

WB

D2 D2

EX EX

WB WB

U - Pipe V - Pipe

Diversified PipelinesDiversified Pipelines

• • •

• • •

• • •IF

ID

RD

© Shen, Lipasti
5

• • •WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Power4 Diversified PipelinesPower4 Diversified Pipelines
PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

/C/ / 2

© Shen, Lipasti
6

Reorder BufferBR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

StQ

D-Cache

ECE 552: Introduction To Computer Architecture 2

Rigid Pipeline Stall PolicyRigid Pipeline Stall Policy

Backward
Propagation
of Stalling

© Shen, Lipasti
7

Bypassing
of Stalled
Instruction

Stalled
Instruction

of Stalling

Not Allowed

Dynamic PipelinesDynamic Pipelines

• • •

• • •

• • •IF

ID

RD

Dispatch
Buffer

(in order)

(out of order)

© Shen, Lipasti
8

• • •WB

ALU MEM1 FP1 BR

MEM2 FP2

FP3

EX

Reorder
Buffer

()

(out of order)

(in order)

Interstage BuffersInterstage Buffers

• • •

• • •

Stage i

Buffer (n)

Stage i +1

n

n

Stage i

Buffer (1)

Stage i + 1

(in order)1

1

• • •

(in order)

© Shen, Lipasti
9

• • •

Stage i

Buffer (> n)

Stage i + 1

(a) (b)

(c)

• • •

(in order)

(out of order)
_

Superscalar Pipeline StagesSuperscalar Pipeline Stages

Instruction Buffer

Fetch

Dispatch Buffer

Decode

Dispatch

In
Program

Order

© Shen, Lipasti
10

Issuing Buffer

Completion Buffer

Execute

Store Buffer

Complete

Retire

In
Program

Order

Out
of

Order

Limitations of Scalar PipelinesLimitations of Scalar Pipelines

 Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1
– Solution: wide (superscalar) pipeline

 Inefficient unified pipeline

© Shen, Lipasti
11

 Inefficient unified pipeline
– Long latency for each instruction
– Solution: diversified, specialized pipelines

 Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions
– Solution: Out-of-order execution, distributed

execution pipelines

Impediments to High IPCImpediments to High IPC

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

© Shen, Lipasti
12

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

ECE 552: Introduction To Computer Architecture 3

Superscalar Pipeline DesignSuperscalar Pipeline Design

 Instruction Fetching Issues
 Instruction Decoding Issues
 Instruction Dispatching Issues

© Shen, Lipasti
13

Instruction Dispatching Issues
 Instruction Execution Issues
 Instruction Completion & Retiring Issues

Instruction FetchInstruction Fetch

 Challenges:
– Branches: control dependences PC

 Objective: Fetch multiple instructions per cycle

© Shen, Lipasti
14

– Branch target misalignment

– Instruction cache misses

 Solutions
– Alignment hardware

– Prediction/speculation

Instruction Memory

3 instructions fetched

Fetch AlignmentFetch Alignment
PC � XX00001

000
00 01 10 11

001

od
er

© Shen, Lipasti
15

111

Fetch group

Row width

R
ow

 d
ec

o

Branches Branches –– MIPSMIPS

6 Types of Branches
Jump (uncond, no save PC, imm)
Jump and link (uncond, save PC, imm)
Jump register (uncond no save PC register)

© Shen, Lipasti
16

Jump register (uncond, no save PC, register)
Jump and link register (uncond, save PC, register)
Branch (conditional, no save PC, PC+imm)
Branch and link (conditional, save PC, PC+imm)

Disruption of Sequential Control FlowDisruption of Sequential Control Flow

Instruction/Decode Buffer

Fetch

Dispatch Buffer

Decode

Dispatch

© Shen, Lipasti
17

Reservation

Reorder/

Store Buffer

Complete

Retire

StationsIssue

Execute

Finish
Completion Buffer

Branch

Branch PredictionBranch Prediction

 Target address generation Target Speculation
– Access register:

 PC, General purpose register, Link register

– Perform calculation:

© Shen, Lipasti
18

Perform calculation:
 +/- offset, autoincrement

 Condition resolution Condition speculation
– Access register:

 Condition code register, General purpose register

– Perform calculation:
 Comparison of data register(s)

ECE 552: Introduction To Computer Architecture 4

Target Address GenerationTarget Address Generation

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

PC-
rel.

Reg.
ind.

Reg.
ind.
with
offset

© Shen, Lipasti
19

Reservation

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

Condition ResolutionCondition Resolution

Decode Buffer

Fetch

Dispatch Buffer

Decode

Reservation

Dispatch

CC
reg.

GP
reg.
value
comp.

© Shen, Lipasti
20

Reservation

Store Buffer

Complete

Retire

Stations
Issue

Execute

Finish Completion Buffer

Branch

Branch Instruction SpeculationBranch Instruction Speculation

Decode Buffer

Fetch

Di t h B ff

Decode

to I-cache

PC(seq.) = FA (fetch address)
PC(seq.)Branch

Predictor
(using a BTB)

Spec. target

BTB
update

Prediction

(t t dd

Spec. cond.

 FA-mux

© Shen, Lipasti
21

Dispatch Buffer

Reservation

Dispatch

Stations
Issue

Execute

Finish Completion Buffer

Branch

(target addr.
and history)

Static Branch PredictionStatic Branch Prediction

 Single-direction
– Always not-taken: Intel i486

 Backwards Taken/Forward Not Taken

© Shen, Lipasti
22

– Loop-closing branches have negative offset
– Used as backup in Pentium Pro, II, III, 4

Static Branch PredictionStatic Branch Prediction

 Profile-based
1. Instrument program binary

2. Run with representative (?) input set

© Shen, Lipasti
23

p () p

3. Recompile program
a. Annotate branches with hint bits, or

b. Restructure code to match predict not-taken

 Performance: 75-80% accuracy
– Much higher for “easy” cases

Dynamic Branch PredictionDynamic Branch Prediction

 Main advantages:
– Learn branch behavior autonomously

 No compiler analysis, heuristics, or profiling

© Shen, Lipasti
24

– Adapt to changing branch behavior
 Program phase changes branch behavior

 First proposed in 1980
– US Patent #4,370,711, Branch predictor using

random access memory, James. E. Smith

 Continually refined since then

ECE 552: Introduction To Computer Architecture 5

Smith Predictor HardwareSmith Predictor Hardware

Branch Address

m

2m k-bit counters

Saturating Counter
Increment/Decrement

Updated Counter Value

© Shen, Lipasti
25

 Jim E. Smith. A Study of Branch Prediction Strategies.
International Symposium on Computer Architecture, pages 135-148,
May 1981

 Widely employed: Intel Pentium, PowerPC 604, PowerPC 620, etc.

Branch Prediction
most significant bit

Increment/Decrement

Branch Outcome

TwoTwo--level Branch Predictionlevel Branch Prediction
PC = 01011010010101

010110

000000
000001
000010
000011

010100
010101

PHT

© Shen, Lipasti
26

 BHR adds global branch history
– Provides more context
– Can differentiate multiple instances of the same static branch
– Can correlate behavior across multiple static branches

BHR
0110

010110
010111

111110
111111

 1 0

1 Branch Prediction

Combining or Hybrid PredictorsCombining or Hybrid Predictors
Branch Address

P0 P1

Branch Address

M

PApgshare

M

© Shen, Lipasti
27

 Select “best” history
 Reduce interference w/partial updates
 Scott McFarling. Combining Branch Predictors. TN-36,

Digital Equipment Corporation Western Research
Laboratory, June 1993.

Branch Prediction

Meta-Prediction

Branch Prediction

Branch Target PredictionBranch Target Prediction
Branch Address

Branch ...target tag target tag target tag

Branch Target Buffer

Size of
Instruction

Direction
Predictor

© Shen, Lipasti
28

 = = =

OR

 +

Branch Target

BTB Hit?

not-taken
target

taken-target
0 1

 Partial tags sufficient in BTB

Return Address StackReturn Address Stack
Branch Address

Size of
Instruction

BTB
Return
Address

BTB

Bra nch Address

© Shen, Lipasti
29

 For each call/return pair:
– Call: push return address onto hardware stack
– Return: pop return address from hardware stack

Target Prediction

Target Predictionis this a return?

(a) (b)

Branch SpeculationBranch Speculation

NT T NT T NT TNT T

NT T NT T

NT T (TAG 1)

(TAG 2)

(TAG 3)

© Shen, Lipasti
30

 Leading Speculation
– Typically done during the Fetch stage
– Based on potential branch instruction(s) in the current fetch

group

 Trailing Confirmation
– Typically done during the Branch Execute stage
– Based on the next Branch instruction to finish execution

(TAG 3)

ECE 552: Introduction To Computer Architecture 6

Branch SpeculationBranch Speculation
 Leading Speculation

1. Tag speculative instructions
2. Advance branch and following instructions
3. Buffer addresses of speculated branch

instructions

© Shen, Lipasti
31

 Trailing Confirmation
1. When branch resolves, remove/deallocate

speculation tag
2. Permit completion of branch and following

instructions

Branch SpeculationBranch Speculation

NT T NT T NT TNT T

NT T NT T

NT T

(TAG 2)

(TAG 3) (TAG 1)

© Shen, Lipasti
32

 Start new correct path
– Must remember the alternate (non-predicted) path

 Eliminate incorrect path
– Must ensure that the mis-speculated instructions

produce no side effects

(TAG 3) ()

MisMis--speculation Recoveryspeculation Recovery
 Start new correct path

1. Update PC with computed branch target (if
predicted NT)

2. Update PC with sequential instruction address (if
predicted T)

3 C b i l i i b h

© Shen, Lipasti
33

3. Can begin speculation again at next branch

 Eliminate incorrect path
1. Use tag(s) to deallocate resources occupied by

speculative instructions

2. Invalidate all instructions in the decode and dispatch
buffers, as well as those in reservation stations

Summary: Instruction FetchSummary: Instruction Fetch

 Fetch group alignment
 Target address generation

– Branch target buffer
– Return address stack

© Shen, Lipasti
34

 Target condition generation
– Static prediction
– Dynamic prediction

 Speculative execution
– Tagging/tracking instructions
– Recovering from mispredicted branches

Issues in DecodingIssues in Decoding

 Primary Tasks
– Identify individual instructions (!)

– Determine instruction types

© Shen, Lipasti
35

yp

– Determine dependences between instructions

 Two important factors
– Instruction set architecture

– Pipeline width

Pentium Pro Fetch/DecodePentium Pro Fetch/Decode
Macroinstruction bytes from IFU

Instruction buffer 16 bytes
To next
address

calculation

© Shen, Lipasti
36

Branch
address

calculation

uROM
Decoder

0
Decoder

1
Decoder

2

4 uops 1 uop 1 uop

uop queue (6)

ECE 552: Introduction To Computer Architecture 7

Predecoding in the AMD K5Predecoding in the AMD K5
Byte1 Byte2 Byte8

Byte1 Byte2 Byte8

From memory

8 instruction bytes 64

8 instruction bytes � predecode bits 64 � 40

Predecode logic
5 bits 5 bits 5 bits

© Shen, Lipasti
37

16 instruction bytes � predecode bits

Up to 4 ROPs ROP1 ROP2 ROP3 ROP4

128 � 80

I-Cache

Decode, translate,
and dispatch

Dependence CheckingDependence Checking
Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1 Dest Src0 Src1

?= ?= ?= ?= ?= ?=

?= ?= ?= ?=

© Shen, Lipasti
38

 Trailing instructions in fetch group
– Check for dependence on leading instructions

?= ?=

Instruction Dispatch and IssueInstruction Dispatch and Issue

 Parallel pipeline
– Centralized instruction fetch

– Centralized instruction decode

© Shen, Lipasti
39

 Diversified pipeline
– Distributed instruction execution

Necessity of Instruction DispatchNecessity of Instruction Dispatch

Instruction fetching

Instruction decoding

© Shen, Lipasti
40

Instruction decoding

Instruction dispatching

Instruction execution

FU nFU 3FU 2FU 1

Centralized Reservation StationCentralized Reservation Station
Centralized reservation
station (dispatch buffer)

Dispatch
(issue)

© Shen, Lipasti
41

Completion buffer

Execute

Distributed Reservation StationDistributed Reservation Station

Dispatch buffer

Distributed
reservation
stations

Issue

Dispatch

© Shen, Lipasti
42

Completion buffer

Complete

Finish

Execute

ECE 552: Introduction To Computer Architecture 8

Issues in Instruction ExecutionIssues in Instruction Execution

 Parallel execution units
– Bypassing is a real challenge

 Resolving register data dependences

© Shen, Lipasti
43

– Want out-of-order instruction execution

 Resolving memory data dependences
– Want loads to issue as soon as possible

 Maintaining precise exceptions
– Required by the ISA

Bypass NetworksBypass Networks PCI-Cache

BR
Scan

BR
Predict

Fetch Q

Decode

Reorder BufferBR/CR
Issue Q

CR
Unit

BR
Unit

FX/LD 1
Issue Q

FX1
Unit LD1

Unit

FX/LD 2
Issue Q

LD2
Unit

FX2
Unit

FP
Issue Q

FP1
Unit

FP2
Unit

© Shen, Lipasti
44

 O(n2) interconnect from/to FU inputs and outputs
 Associative tag-match to find operands
 Solutions (hurt IPC, help cycle time)

– Use RF only (IBM Power4) with no bypass network

– Decompose into clusters (Alpha 21264)

StQ

D-Cache

The Big PictureThe Big Picture
INSTRUCTION PROCESSING CONSTRAINTS

Resource Contention Code Dependences
(Structural Dependences)

© Shen, Lipasti
45

Control Dependences Data Dependences

True Dependences

Anti-Dependences Output Dependences

Storage Conflicts(RAW)

(WAR) (WAW)

Register Data DependencesRegister Data Dependences

 Program data dependences cause hazards
– True dependences (RAW)
– Antidependences (WAR)

© Shen, Lipasti
46

– Output dependences (WAW)
 When are registers read and written?

– Out of program order!
– Hence, any/all of these can occur

 Solution to all three: register renaming

Register Renaming: WAR/WAWRegister Renaming: WAR/WAW

 Widely employed (Core i7, Athlon/Phenom, …)
 Resolving WAR/WAW:

– Each register write gets unique “rename register”

Writes are committed in program order at Writeback

© Shen, Lipasti
47

– Writes are committed in program order at Writeback

– WAR and WAW are not an issue
 All updates to “architected state” delayed till writeback

 Writeback stage always later than read stage

– Reorder Buffer (ROB) enforces in-order writeback

Add R3 <= … P32 <= …
Sub R4 <= … P33 <= …
And R3 <= … P35 <= …

Register Renaming: RAWRegister Renaming: RAW

 In order, at dispatch:
– Source registers checked to see if “in flight”

 Register map table keeps track of this

© Shen, Lipasti
48

 If not in flight, can be read from the register file

 If in flight, look up “rename register” tag (IOU)

– Then, allocate new register for register write

Add R3 <= R2 + R1 P32 <= P2 + P1
Sub R4 <= R3 + R1 P33 <= P32 + P1
And R3 <= R4 & R2 P35 <= P33 + P2

ECE 552: Introduction To Computer Architecture 9

Register Renaming: RAWRegister Renaming: RAW

 Advance instruction to reservation station
– Wait for rename register tag to trigger issue

 Reservation station enables out-of-order

© Shen, Lipasti
49

issue
– Newer instructions can bypass stalled

instructions

“Dataflow Engine” for Dynamic Execution“Dataflow Engine” for Dynamic Execution
Dispatch Buffer

Reservation

Dispatch

Stations

Reg. File Ren. Reg.
Allocate
Reorder
Buffer
entries

Reg. Write Back

© Shen, Lipasti
50

Complete

Reorder Buffer

Branch
Forwarding
results to
Res. Sta. &
rename

Managed as a queue;
Maintains sequential order
of all Instructions in flight

Integer Integer Float.- Load/
Point Store

registers

Instruction Processing StepsInstruction Processing Steps
•DISPATCH:

•Read operands from Register File (RF) and/or Rename Buffers (RRB)

•Rename destination register and allocate RRF entry

•Allocate Reorder Buffer (ROB) entry

•Advance instruction to appropriate Reservation Station (RS)

•EXECUTE:

•RS entry monitors bus for register Tag(s) to latch in pending operand(s)

© Shen, Lipasti
51

•RS entry monitors bus for register Tag(s) to latch in pending operand(s)

•When all operands ready, issue instruction into Functional Unit (FU) and
deallocate RS entry (no further stalling in execution pipe)

•When execution finishes, broadcast result to waiting RS entries, RRB entry,
and ROB entry

•COMPLETE:

•Update architected register from RRB entry, deallocate RRB entry, and if it
is a store instruction, advance it to Store Buffer

•Deallocate ROB entry and instruction is considered architecturally
completed

Physical Register FilePhysical Register File

F
e

tc
h

D
ec

od
e

R
en

am
e

Is
su

e
R

F
 R

ea
d

E
xe

cu
te

A
ge

n-
D

$

A
LU

 R
F

 W
rit

e
D

$

Lo
ad

 R
F

 W
rit

e

Map Table

© Shen, Lipasti
52

 Used in MIPS R10000, Pentium 4, AMD Bulldozer
 All registers in one place

– Always accessed right before EX stage
– No copying to real register file at commit

Physical Register File

p
R0 => P7

R1 => P3

…

R31 => P39

Managing Physical RegistersManaging Physical Registers
Map Table

R0 => P7

R1 => P3

…

R31 => P39

Add R3 <= R2 + R1 P32 <= P2 + P1
Sub R4 <= R3 + R1 P33 <= P32 + P1
…
…
And R3 <= R4 & R2 P35 <= P33 + P2

Release P32
(previous R3)

when this
instruction
completes
execution

© Shen, Lipasti
53

 What to do when all physical registers are in use?
– Must release them somehow to avoid stalling

– Maintain free list of “unused” physical registers

 Release when no more uses are possible
– Sufficient: next write commits

Memory Data Memory Data
DependencesDependences
 WAR/WAW: stores commit in order

– Hazards not possible. Why?
 RAW: loads must check pending stores

– Store queue keeps track of pending store
addresses

Store
Queue

Load/Store RS

Agen

Mem

© Shen, Lipasti
54

– Loads check against these addresses
– Similar to register bypass logic
– Comparators are 32 or 64 bits wide (address

size)
 Major source of complexity in modern

designs
– Store queue lookup is position-based
– What if store address is not yet known?

Reorder Buffer

ECE 552: Introduction To Computer Architecture 10

Increasing Memory BandwidthIncreasing Memory Bandwidth
Dispatch Buffer

Dispatch

RS’s

Branch

Reg. File Ren. Reg.

Reg. Write Back

Integer Integer Float.- Load/ Load/

© Shen, Lipasti
55

Reorder Buff.

Point Store

Data Cache

Complete

Retire

Store Buff.

Store

Missed
 loads

Issues in Completion/RetirementIssues in Completion/Retirement

 Out-of-order execution
– ALU instructions

– Load/store instructions

© Shen, Lipasti
56

 In-order completion/retirement
– Precise exceptions

 Solutions
– Reorder buffer retires instructions in order

– Store queue retires stores in order

– Exceptions can be handled at any instruction
boundary by reconstructing state out of ROB/SQ

A Dynamic Superscalar ProcessorA Dynamic Superscalar Processor

Instruction/decode buffer

Fetch

Dispatch buffer

Decode

Dispatch

In
 o

rd
er

© Shen, Lipasti
57

Reservation
stations

Reorder/completion buffer

Finish

Execute

Issue

Store buffer

Complete

Retire

In
 o

rd
er

O
ut

 o
f

or
de

r

Superscalar SummarySuperscalar Summary

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

© Shen, Lipasti
58

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

Landscape of Microprocessor Families

0.5

1

n
t2

00
0/

M
H

z

Intel-x86

AMD-x86

Power

Itanium

700
500

300

100

PIII

Athlon

Power4

900

1100
1900 SpecINT 2000 1300

1500

Opteron

Extreme

Power 3

Power5

DTN

1700

Itanium

[John DeVale & Bryan Black, 2005]

© Shen, Lipasti
59

0

0 500 1000 1500 2000 2500 3000 3500

Frequency (MHz)

S
P

E
C

in

P4

Athlon

** Data source www.spec.org

NWD

800 MHz

PSC

CPIPathLength

Frequency
ePerformanc CPU

Superscalar SummarySuperscalar Summary

 Instruction flow
– Branches, jumps, calls: predict target, direction
– Fetch alignment
– Instruction cache misses

© Shen, Lipasti
60

– Instruction cache misses
 Register data flow

– Register renaming: RAW/WAR/WAW
 Memory data flow

– In-order stores: WAR/WAW
– Store queue: RAW
– Data cache misses: missed load buffers

