
ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: Cache PerformanceECE/CS 552: Cache Performance
Instructor: Mikko H Lipasti

llFall 2010
University of Wisconsin-Madison

Lecture notes based on notes by Mark Hill
Updated by Mikko Lipasti

Memory HierarchyMemory Hierarchy
CPU

I & D L1 Cache

Temporal Locality
•Keep recently referenced
items at higher levels

•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels

•Future references satisfied
quickly

© Hill, Lipasti
2

Shared L2 Cache

Main Memory

Disk

Caches and PerformanceCaches and Performance

 Caches
– Enable design for common case: cache hit

 Cycle time, pipeline organization

 Recovery policy

© Hill, Lipasti
3

 Recovery policy

– Uncommon case: cache miss
 Fetch from next level

– Apply recursively if multiple levels

 What to do in the meantime?

 What is performance impact?
 Various optimizations are possible

Performance ImpactPerformance Impact

 Cache hit latency
– Included in “pipeline” portion of CPI

 E.g. IBM study: 1.15 CPI with 100% cache hits

T i ll 1 3 l f L1 h

© Hill, Lipasti
4

– Typically 1-3 cycles for L1 cache
 Intel/HP McKinley: 1 cycle

– Heroic array design

– No address generation: load r1, (r2)

 IBM Power4: 3 cycles
– Address generation

– Array access

– Word select and align

Cache Hit continuedCache Hit continued

 Cycle stealing common
– Address generation < cycle
– Array access > cycle
– Clean FSD cycle boundaries violated

AGEN CACHE

AGEN CACHE

© Hill, Lipasti
5

– Clean, FSD cycle boundaries violated
 Speculation rampant

– “Predict” cache hit
– Don’t wait for tag check
– Consume fetched word in pipeline
– Recover/flush when miss is detected

 Reportedly 7 (!) cycles later in Pentium-IV

Cache Hits and PerformanceCache Hits and Performance
 Cache hit latency determined by:

– Cache organization
 Associativity

– Parallel tag checks expensive, slow
– Way select slow (fan-in, wires)

 Block size

© Hill, Lipasti
6

 Block size
– Word select may be slow (fan-in, wires)

 Number of block (sets x associativity)
– Wire delay across array
– “Manhattan distance” = width + height
– Word line delay: width
– Bit line delay: height

 Array design is an art form
– Detailed analog circuit/wire delay modeling

Word Line

Bit Line

ECE 552: Introduction To Computer
Architecture 2

Cache Misses and Cache Misses and
PerformancePerformance
 Miss penalty

– Detect miss: 1 or more cycles
– Find victim (replace line): 1 or more cycles

 Write back if dirty

© Hill, Lipasti
7

 Write back if dirty

– Request line from next level: several cycles
– Transfer line from next level: several cycles

 (block size) / (bus width)

– Fill line into data array, update tag array: 1+ cycles
– Resume execution

 In practice: 6 cycles to 100s of cycles

Cache Miss RateCache Miss Rate

 Determined by:
– Program characteristics

 Temporal locality

© Hill, Lipasti
8

 Spatial locality

– Cache organization
 Block size, associativity, number of sets

Improving LocalityImproving Locality

 Instruction text placement
– Profile program, place unreferenced or rarely

referenced paths “elsewhere”

© Hill, Lipasti
9

 Maximize temporal locality

– Eliminate taken branches
 Fall-through path has spatial locality

Improving LocalityImproving Locality

 Data placement, access order
– Arrays: “block” loops to access subarray that fits into cache

 Maximize temporal locality

– Structures: pack commonly-accessed fields together

© Hill, Lipasti
10

Structures: pack commonly accessed fields together
 Maximize spatial, temporal locality

– Trees, linked lists: allocate in usual reference order
 Heap manager usually allocates sequential addresses
 Maximize spatial locality

 Hard problem, not easy to automate:
– C/C++ disallows rearranging structure fields
– OK in Java

Cache Miss Rates: 3 C’s [Hill]Cache Miss Rates: 3 C’s [Hill]

 Compulsory miss
– First-ever reference to a given block of memory

 Capacity

© Hill, Lipasti
11

– Working set exceeds cache capacity

– Useful blocks (with future references) displaced

 Conflict
– Placement restrictions (not fully-associative) cause

useful blocks to be displaced

– Think of as capacity within set

Cache Miss Rate EffectsCache Miss Rate Effects
 Number of blocks (sets x associativity)

– Bigger is better: fewer conflicts, greater capacity
 Associativity

– Higher associativity reduces conflicts
Very little benefit beyond 8 way set associative

© Hill, Lipasti
12

– Very little benefit beyond 8-way set-associative
 Block size

– Larger blocks exploit spatial locality
– Usually: miss rates improve until 64B-256B
– 512B or more miss rates get worse

 Larger blocks less efficient: more capacity misses
 Fewer placement choices: more conflict misses

ECE 552: Introduction To Computer
Architecture 3

Cache Miss RateCache Miss Rate
 Subtle tradeoffs between cache organization

parameters
– Large blocks reduce compulsory misses but increase

miss penalty
 #compulsory = (working set) / (block size)

© Hill, Lipasti
13

p y (g) ()
 #transfers = (block size)/(bus width)

– Large blocks increase conflict misses
 #blocks = (cache size) / (block size)

– Associativity reduces conflict misses
– Associativity increases access time

 Can associative cache ever have higher miss rate
than direct-mapped cache of same size?

Cache Miss Rates: 3 C’sCache Miss Rates: 3 C’s

4

5

6

7

8

9

n
s
tr
u
c
ti
o
n
 (
%

)

Conflict

Capacity

© Hill, Lipasti
14

0

1

2

3

4

8K1W 8K4W 16K1W 16K4W

M
is

s
 p

e
r
In Compulsory

 Vary size and associativity
– Compulsory misses are constant
– Capacity and conflict misses are reduced

Cache Miss Rates: 3 C’sCache Miss Rates: 3 C’s

4

5

6

7

8

In
s
tr
u
c
ti
o
n
 (
%

)

Conflict

Capacity

C l

© Hill, Lipasti
15

0

1

2

3

8K32B 8K64B 16K32B 16K64B

M
is

s
 p

e
r
I Compulsory

 Vary size and block size
– Compulsory misses drop with increased block size
– Capacity and conflict can increase with larger blocks

Cache Misses and Cache Misses and
PerformancePerformance
 How does this affect performance?
 Performance = Time / Program

Instructions Cycles Time= X X

© Hill, Lipasti
16

 Cache organization affects cycle time
– Hit latency

 Cache misses affect CPI

y

Program Instruction Cycle

(code size)

= X X

(CPI) (cycle time)

Cache Misses and CPICache Misses and CPI

inst

miss

miss

cycles

inst

cycles
inst

cycles

inst

cycles

inst

cycles
CPI

hit

misshit





© Hill, Lipasti
17

 Cycles spent handling misses are strictly additive
 Miss_penalty is recursively defined at next level

of cache hierarchy as weighted sum of hit latency
and miss latency

rateMisspenaltyMiss
inst

cycleshit __ 

Cache Misses and CPICache Misses and CPI

 Pl is miss penalty at each of n levels of cache
 MPIl is miss rate per instruction at each of n

l

n

l
l

hit MPIP
inst

cycles
CPI  

1

© Hill, Lipasti
18

 MPIl is miss rate per instruction at each of n
levels of cache

 Miss rate specification:
– Per instruction: easy to incorporate in CPI
– Per reference: must convert to per instruction

 Local: misses per local reference
 Global: misses per ifetch or load or store

ECE 552: Introduction To Computer
Architecture 4

Cache Performance ExampleCache Performance Example

 Assume following:
– L1 instruction cache with 98% per instruction hit rate
– L1 data cache with 96% per instruction hit rate
– Shared L2 cache with 40% local miss rate

© Hill, Lipasti
19

– Shared L2 cache with 40% local miss rate
– L1 miss penalty of 8 cycles
– L2 miss penalty of:

 10 cycles latency to request word from memory
 2 cycles per 16B bus transfer, 4x16B = 64B block transferred
 Hence 8 cycles transfer plus 1 cycle to fill L2
 Total penalty 10+8+1 = 19 cycles

Cache Performance ExampleCache Performance Example

l

n

l
l

hit MPIP
inst

cycles
CPI  

1

04.002.08
15.1 






 

inst

miss

inst

miss

miss

cycles
CPI

© Hill, Lipasti
20

086.2456.048.015.1

024.019
48.015.1

06.040.019









inst

miss

miss

cycles

inst

ref

ref

miss

miss

cycles

Cache Misses and Cache Misses and
PerformancePerformance
 CPI equation

– Only holds for misses that cannot be overlapped with
other activity

– Store misses often overlapped

© Hill, Lipasti
21

Store misses often overlapped
 Place store in store queue
 Wait for miss to complete
 Perform store
 Allow subsequent instructions to continue in parallel

– Modern out-of-order processors also do this for loads
 Cache performance modeling requires detailed modeling of

entire processor core

Caches SummaryCaches Summary

 Four questions
– Placement

 Direct-mapped, set-associative, fully-associative

d ifi i

© Hill, Lipasti
22

– Identification
 Tag array used for tag check

– Replacement
 LRU, FIFO, Random

– Write policy
 Write-through, writeback

Caches: SetCaches: Set--associativeassociative
SRAM Cache

Hash

Address

Index
a Tags a Data Blocks

Index

© Hill, Lipasti
23

Data Out

Offset

?=
?=

?=
?=

Tag

Caches: DirectCaches: Direct--MappedMapped

Hash

Address

Index
Tag Data

Index

© Hill, Lipasti
24

Data Out

Offset

?=
Tag

ECE 552: Introduction To Computer
Architecture 5

Caches: FullyCaches: Fully--associativeassociative

SRAM CacheHash

Address

a Tags a Data Blocks

© Hill, Lipasti
25

Data Out

Offset

?=
?=

?=
?=

Tag

Caches SummaryCaches Summary

 Hit latency

l

n

l
l

hit MPIP
inst

cycles
CPI  

1

© Hill, Lipasti
26

– Block size, associativity, number of blocks

 Miss penalty
– Overhead, fetch latency, transfer, fill

 Miss rate
– 3 C’s: compulsory, capacity, conflict

– Determined by locality, cache organization

