Mikko Lipasti

Spring 2002

ECE/CS 552 : Introduction to Computer Architecture

IN-CLASS MIDTERM EXAM

March 14th, 2002

NAME:__

This exam is to be done individually in 75 minutes. Total 10 Questions, 75 points

1. (10 Points) A sequence of bits (binary digits) can mean various things depending on what it represents. Fill in the holes in the following table by identifying either the missing 8-bit pattern that represents the specified number, or computing the number or numbers that the 8-bit pattern represents.

NOTE: fill in all the empty slots in the table.

	8-bit pattern
	Unsigned representation
	Signed representation

	0101 1100
	92
	92

	1000 1000
	136
	-120

	1111 0111
	247
	-9

	1001 1011
	155
	-101

	0100 1011
	75
	75

Show your work here:

2. (4 point) A fixed number of bits can only be used to represent a finite number of unique numbers. Fill in the least and greatest decimal numbers you can represent with a 7-bit pattern in the following table?

	7-bit representation
	Least decimal number
	Greatest decimal number

	Unsigned
	0
	127

	Signed 2’s complement
	- 64
	63

Show your work here:

3. (4 points) Explain how an 8-bit ALU can detect arithmetic overflow when adding both signed and unsigned numbers:

Unsigned overflow:

Carry out is true.
Signed overflow:

P + P = N ;

N + N = P.

4. (2 points) Discuss if and how a processor should react when overflow is detected.

Hardware should detect overflow and raise an exception (jump to exception handling program).

5. (10 points) The IBM study of pipelined processor performance assumed an instruction mix based on popular C programs in use in the 1980s. Since then, object-oriented languages like C++ and Java have become much more common. One of the effects of these languages is that object inheritance and polymorphism can be used to replace conditional branches with virtual function calls. Given the IBM instruction mix and CPI shown in the following table, perform the following transformations to reflect the use of C++/Java, and recompute the overall CPI and speedup or slowdown due to this change (fill in the table to reflect your work to receive partial credit):

· Replace 50% of taken conditional branches with a load instruction followed by a jump register instruction (the load and jump register implement a virtual function call).

· Replace 25% of not-taken branches with a load instruction followed by a jump register instruction.

[image: image1.emf]Instruction type Old Mix %LatencyOld CPI Cycles New Mix %InstructionsCycles New CPI

Load 25.0% 2 0.50 500 30.5% 305 610 2.00

Store 15.0% 1 0.15 150 15.0% 150 150 1.00

Arithmetic 30.0% 1 0.30 300 30.0% 300 300 1.00

Logical 10.0% 1 0.10 100 10.0% 100 100 1.00

Branch - T 8.0% 3 0.24 240 4.0% 40 120 3.00

Branch - NT 6.0% 2 0.12 120 4.5% 45 90 2.00

Jump 5.0% 2 0.10 100 5.0% 50 100 2.00

Jump register 1.0% 3 0.03 30 6.5% 65 195 3.00

Total 100.0% 1.54 1540 105.5% 1055.0 1665.0 1.58

Speedup 0.92492

Slowdown 1.08117

New overall CPI: 1.58
Speedup/slowdown: 1665 cycles / 1540 cycles = 0.925x speedup or 7.5% slowdown

Assume the standard 5-stage pipeline discussed in class. Also assume that rather than having a separate PC (program counter) register, as in the MIPS instruction set, consider an instruction set that uses the R31 general purpose register as the program counter. The pipeline is summarized in the following table.

	Pipestage
	Action

	IF
	Fetch instruction from MEM[R31]

	RD
	Read source operands from R0..R31

	EX
	Execute ALU instructions;

Generate address for load/store

	MEM
	Loads read from data memory;

Stores write to data memory

	WB
	Results are written back to registers R0..R31

6. (5 points) Does this pipeline have any WAR or WAW hazards for register or memory operands? If so, describe what they are. If not, prove why not.

Both Yes. WAR happens when an instruction wants to read R31. WAW happens when an instruction wants to write to R31.

7. (5 points) Does this pipeline have any additional RAW hazards besides the ones discussed in lecture? If so, describe what they are. If not, prove why not.

Yes. IF stage is reading register 31. Therefore RAW hazard can happen between IF and EX/MEM stage.

Design of a Multicycle Datapath and Control Logic

Objective:

Given the following instruction set with four 8-bit instructions, design a multicycle data path and control logic. Assume 4 8-bit registers and an 8-bit ALU. Don’t worry about initial values of PC, registers, etc. (do not show reset, clear, or preset signals).

Instruction set:

· load $p1, ($p2)

· Contents of memory location ($p2) are loaded into register $p1.

· store $p1,($p2)

· Contents of register $p1 are stored into memory location ($p2).

· sub $p1,$p2

· $p1=$p1-$p2

· branch_negative $p1,(4 bit PC-relative target)

· If $p1 is negative, then branch to newPC + the sign extended target, otherwise this instruction is a NOP.

Opcode table:

[image: image2.wmf]Instruction type

Old Mix %

Latency

Old CPI

Cycles

New Mix %

Instructions

Cycles

New CPI

Load

25.0%

2

0.50

500

30.5%

305

610

2.00

Store

15.0%

1

0.15

150

15.0%

150

150

1.00

Arithmetic

30.0%

1

0.30

300

30.0%

300

300

1.00

Logical

10.0%

1

0.10

100

10.0%

100

100

1.00

Branch - T

8.0%

3

0.24

240

4.0%

40

120

3.00

Branch - NT

6.0%

2

0.12

120

4.5%

45

90

2.00

Jump

5.0%

2

0.10

100

5.0%

50

100

2.00

Jump register

1.0%

3

0.03

30

6.5%

65

195

3.00

Total

100.0%

1.54

1540

105.5%

1055.0

1665.0

1.58

Speedup

0.92492

Slowdown

1.08117

Assembly level syntax: {MSB……LSB}

· load $p1, ($p2)

00, aa, bb, XX

· store $p1, ($p2)

01, aa, bb, XX

· sub $p1, $p2

10, aa, bb, XX

· branch_negative $p1, B B B B

11, aa, B B B B

Multicycle Execution Stages:

· IF – fetch instruction from memory, compute newPC = PC + 1

· RD – read instruction source operands from register file, compute branch target tPC = newPC + SE(BBBB)

· EX/MEM – load from memory, store to memory, execute sub, or check branch condition

· WB – write load or ALU result to register file

8. (15 points) Design a shared 8-bit ALU for a multicycle data path for this instruction set. Assume that each logic gate can have no more than 4 inputs and has a delay of 1ns. Consider the combinational delay for both a ripple-carry and a carry-lookahead adder, choose the faster option, and show your design below. Include any control inputs needed in this ALU. Recall that this ALU is used for executing the sub instruction, computing newPC, and computing the branch target.

8-bit ripple-carry ALU combinational delay:

Delay for Full Adder: 3 ns
Delay for 8-bit ripple-carry adder: 3*8=24

8-bit carry-lookahead ALU combinational delay:

1 Full Adder delay plus 2 / 3 Lookahead Carry Unit delay.

3*1 + 2*2 or 3*2 = 7 or 9 ns
Final ALU Design:

 Carry Look-ahdead Adder with subtraction ability. Similar in homework 1.

9. (10 points) Given the multicycle datapath elements below, add all the data paths, control signals, and control inputs you will need to implement the 4 instructions in this instruction set. All data and control signal paths should indicate width. Some control signals and data paths are included as examples.

10. (10 points) Complete the incomplete state transition and control signal table shown below. Add each control signal in your data path as a column in the table, and show what value each signal should have for each state in the table. Also show the next state given any relevant input signals (use ‘x’ as shown for don’t care).

� EMBED Excel.Sheet.8 ���

Instruction�
Opcode�
�
load�
00�
�
store�
01�
�
sub�
10�
�
branch_negative�
11�
�

RFWrite

IRWrite

IFetch

ALUout

ALU

A

B

Register File

Memory Data Register

Instruction

Register

Memory

PC

State�
Input/Next State�
Control Signals (fill in additional ones in empty columns)�
�
�
�
IFetch�
IRWrite�
RFWrite�
�
�
�
�
�
�
�
�
�
�
IF�
X/RD�
1�
1�
0�
�
�
�
�
�
�
�
�
�
�
RD�
Op=00/MEM-LD

Op=01/MEM-ST

Op=10/EX-SUB

Op=11/EX-BR�
0�
0�
0�
�
�
�
�
�
�
�
�
�
�
MEM-LD�
�
0�
0�
0�
�
�
�
�
�
�
�
�
�
�
MEM-ST�
�
0�
0�
0�
�
�
�
�
�
�
�
�
�
�
EX-SUB�
�
0�
0�
0�
�
�
�
�
�
�
�
�
�
�
EX-BR�
�
0�
0�
0�
�
�
�
�
�
�
�
�
�
�
WB�
X/IF�
0�
0�
1�
�
�
�
�
�
�
�
�
�
�

_1349771021.xls
Sheet1

		Instruction type		Old Mix %		Latency		Old CPI		Cycles		New Mix %		Instructions		Cycles		New CPI

		Load		25.0%		2		0.50		500		30.5%		305		610		2.00

		Store		15.0%		1		0.15		150		15.0%		150		150		1.00

		Arithmetic		30.0%		1		0.30		300		30.0%		300		300		1.00

		Logical		10.0%		1		0.10		100		10.0%		100		100		1.00

		Branch - T		8.0%		3		0.24		240		4.0%		40		120		3.00

		Branch - NT		6.0%		2		0.12		120		4.5%		45		90		2.00

		Jump		5.0%		2		0.10		100		5.0%		50		100		2.00

		Jump register		1.0%		3		0.03		30		6.5%		65		195		3.00

		Total		100.0%				1.54		1540		105.5%		1055.0		1665.0		1.58

														Speedup		0.9249249249

														Slowdown		1.0811688312

Sheet2

		

Sheet3

		

