
CS/ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: Midterm ReviewECE/CS 552: Midterm Review
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on notes by Mark Hill and
John P. Shen
Updated by Mikko Lipasti

Computer ArchitectureComputer Architecture
 Exercise in engineering tradeoff analysis

– Find the fastest/cheapest/power-efficient/etc. solution
– Optimization problem with 100s of variables

 All the variables are changing
At non uniform rates– At non-uniform rates

– With inflection points
– Only one guarantee: Today’s right answer will be

wrong tomorrow
 Two high-level effects:

– Technology push
– Application Pull

AbstractionAbstraction

 Difference between interface and
implementation
– Interface: WHAT something does

– Implementation: HOW it does so

What’s the Big Deal?What’s the Big Deal?

 Tower of abstraction
 Complex interfaces

implemented by layers below Compiler
CS536

Application Program
CS302

Operating System

CS537p y y
 Abstraction hides detail
 Hundreds of engineers build

one product
 Complexity unmanageable

otherwise Semiconductor devices
ECE335

Electronic circuits
ECE340

Digital Logic
ECE352

Machine Language (ISA)
CS354

CS536

Performance vs. Design TimePerformance vs. Design Time

 Time to market is critically important
 E.g., a new design may take 3 years

– It will be 3 times fasterIt will be 3 times faster

– But if technology improves 50%/year

– In 3 years 1.53 = 3.38

– So the new design is worse!

(unless it also employs new technology)

Bottom LineBottom Line

 Designers must know BOTH software and
hardware

 Both contribute to layers of abstractiony
 IC costs and performance
 Compilers and Operating Systems

CS/ECE 552: Introduction To Computer
Architecture 2

PerformancePerformance

 Time and performance: Machine A n times
faster than Machine B
– Iff Time(B)/Time(A) = n

 Iron Law: Performance = Time/program =

Instructions Cycles

Program Instruction
Time
Cycle

(code size)

= X X

(CPI) (cycle time)

Performance cont’dPerformance cont’d

 Other Metrics: MIPS and MFLOPS
– Beware of peak and omitted details

 Benchmarks: SPEC2000 (95 in text)
 Summarize performance:

– AM for time
– HM for rate
– GM for ratio

 Amdahl’s Law:
s

f
f

Speedup

1

1

Ch 2 SummaryCh 2 Summary

 Basics
 Registers and ALU ops
 Memory and load/storeMemory and load/store
 Branches and jumps
 Addressing Modes

Summary: Instruction FormatsSummary: Instruction Formats

R: opcode rs rt rd shamt function
6 5 5 5 5 6

I: opcode rs rt address/immediate
6 5 5 166 5 5 16

J: opcode addr
6 26

 Instruction decode:
– Read instruction bits

– Activate control signals

ConclusionsConclusions

 Simple and regular
– Constant length instructions, fields in same place

 Small and fast
– Small number of operands in registers

 Compromises inevitable
– Pipelining should not be hindered

 Make common case fast!
 Backwards compatibility!

Basic Arithmetic and the ALUBasic Arithmetic and the ALU
 Number representations: 2’s complement,

unsigned
 Addition/Subtraction
 Add/Sub ALU
 Full adder, ripple carry, subtraction

 Carry-lookahead addition
 Logical operations
 and, or, xor, nor, shifts

 Overflow

CS/ECE 552: Introduction To Computer
Architecture 3

Unsigned IntegersUnsigned Integers

 f(b31..b0) = b31 x 231 + … + b1 x 21 + b0 x 20

 Treat as normal binary number
E.g. 0…01101010101

= 1 x 27 + 1 x 26 + 0 x 25 + 1 x 24 + 1 x 23 + 0 x 21 + 1 x 20

= 128 + 64 + 16 + 4 + 1 = 213

 Max f(111…11) = 232 – 1 = 4,294,967,295
 Min f(000…00) = 0
 Range [0,232-1] => # values (232-1) – 0 + 1 = 232

Signed IntegersSigned Integers

 2’s complement
f(b31 … b1 b0) = -b31 x 231 + … b1 x 21 + b0 x 20

 Max f(0111…11) = 231 – 1 = 2147483647()
 Min f(100…00) = -231 = -2147483648

(asymmetric)
 Range[-231,231-1] => # values(231-1 - -231 _ 1) = 232

 E.g. –6
– 000…0110 => 111…1001 + 1 => 111…1010

Full AdderFull Adder
 Full adder (a,b,cin) => (cout, s)
 cout = two or more of (a, b, cin)
 s = exactly one or three of (a,b,cin)

a b cin cout s

0 0 0 0 00 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Combined RippleCombined Ripple--carry carry
Adder/SubtractorAdder/Subtractor
 Control = 1 => subtract
 XOR B with control and set cin0 to control

Full Full Full FullFull
Add
er

a0
b0

Full
Add
er

a1
b1

Full
Add
er

a2
b2

Full
Add
er

a31
b31

operation

Cout

44--bit Carry Lookahead Adderbit Carry Lookahead Adder

p3g3 a3b3 p2g2 a2b2 p1g1 a1b1 p0g0 a0b0

Carry Lookahead Block
c0

c4

p3 g3 a3 b3

s3

c3

p2 g2 a2 b2

s2

c2

p1 g1 a1 b1

s1

c1

p0 g0 a0 b0

s0

c0

Hierarchical Carry Lookahead Hierarchical Carry Lookahead
for 16 bitsfor 16 bits

Carry Lookahead Block
c0

c15

PG a,b12-15

s12-15

c12

PG a,b8-11

s8-11

c8

PG a4-7b4-7

s4-7

c4

PG a0-3b0-3

s0-3

c0

CS/ECE 552: Introduction To Computer
Architecture 4

CLA: Compute G’s and P’sCLA: Compute G’s and P’s
G12,15

P12,15

G8,11

P8,11

G4,7

P4,7

G0,3

P0,3

G0,7

P0,7

G8,15

P8,15

G0,15

P0,15

CLA: Compute CarriesCLA: Compute Carries

G0 3G8 11

c8c12

g12 - g15

p12 - p15

c4 c0

g8 - g11

p8 - p11

g4 - g7

p4 - p7

g0 - g3

p0 - p3

G0,3

P0,3

G8,11

P8,11

G0,7

P0,7

c8 c0

c0

All TogetherAll Together

operation
carryininvert

a

Add

result

b

M
ux

M
ux

Addition OverflowAddition Overflow

 2 + 3 = 5 > 4: 010 + 011 = 101 =? –3 < 0
– X is f(2)

 -1 + -4: 111 + 100 = 011 > 0
– Y is ~f(2)

Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

Subtraction OverflowSubtraction Overflow

 No overflow on a-b if signs are the same
 Neg – pos => neg ;; overflow otherwise
 Pos – neg => pos ;; overflow otherwisePos neg pos ;; overflow otherwise
Overflow = f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

What to do on Overflow?What to do on Overflow?

 Ignore ! (C language semantics)
– What about Java? (try/catch?)

 Flag – condition codeg
 Sticky flag – e.g. for floating point

– Otherwise gets in the way of fast hardware

 Trap – possibly maskable
– MIPS has e.g. add that traps, addu that does

not

CS/ECE 552: Introduction To Computer
Architecture 5

Ch. 3 SummaryCh. 3 Summary

 Binary representations, signed/unsigned
 Arithmetic

– Full adder, ripple-carry, carry lookahead
– Carry-select, Carry-save
– Overflow, negative
– More (multiply/divide/FP) later

 Logical
– Shift, and, or

Ch. 4 Processor ImplementationCh. 4 Processor Implementation

 Heart of 552 – key to project
– Sequential logic design review (brief)

– Clock methodology (FSD)

– Datapath – 1 CPI
 Single instruction, 2’s complement, unsigned

– Control

– Multiple cycle implementation (information only)

– Microprogramming (information only)

– Exceptions

Clocking MethologyClocking Methology

 Motivation
– Design data and control without considering clock

– Use Fully Synchronous Design (FSD)
J i i lif d i Just a convention to simplify design process

 Restricts design freedom

 Eliminates complexity, can guarantee timing correctness

 Not really feasible in real designs

 Even in 554 you will violate FSD

Our MethodologyOur Methodology

 Only flip-flops
 All on the same edge (e.g. falling)
 All with same clock

– No need to draw clock signals
 All logic finishes in one cycle

FFs Logic FFsLogic

Our Methodology, cont’dOur Methodology, cont’d

 No clock gating!
– Book has bad

examples

state

write AND clock

new current

 Correct design: state
current

new

write

0

1

Delayed Clocks (Gating)Delayed Clocks (Gating)

Clock

Gated clock

X

D D
Delay

Clock

X Y

 Problem:
– Some flip-flops receive gated clock late

– Data signal may violate setup & hold req’t

X
Delay

Y

CS/ECE 552: Introduction To Computer
Architecture 6

FSD Clocking RulesFSD Clocking Rules

 Tclock = cycle time
T FF t ti i t

Clock
D D

Delay

Clock

Y

Y

 Tsetup = FF setup time requirement
 Thold = FF hold time requirement
 TFF = FF combinational delay
 Tcomb = Combinational delay
 FSD Rules:

– Tclock > TFF + Tcomb + Tsetup

– TFF + Tcomb > Thold

All TogetherAll Together

C_Adx C
Adx
Decoder

.

.

.4

Data_C(i)

DFF

DCE

DFF Bit Slice

Register File?Register File?

A_Adx A
Adx
Decoder

.

.

.4

B_Adx B
Adx
Decoder

.

.

.4

Data_A(i) Data_B(i)

15

i 015

0

...

.

.

.

DFF DFF DFF...

C = Write Port
A,B = Read Ports

Control Signals w/JumpsControl Signals w/Jumps

MultiMulti--cycle Implementationcycle Implementation

 Clock cycle = max(i-mem,reg-read+reg-write,
ALU, d-mem)

 Reuse combination logic on different cycles
– One memoryOne memory
– One ALU without other adders

 But
– Control is more complex (later)
– Need new registers to save values (e.g. IR)

 Used again on later cycles
 Logic that computes signals is reused

MultiMulti--cycle Ctrl Signals cycle Ctrl Signals

CS/ECE 552: Introduction To Computer
Architecture 7

MultiMulti--cycle Stepscycle Steps
Step Description Sample Actions
IF Fetch IR=MEM[PC]

PC=PC+4

ID Decode A=RF(IR[25:21])
B=RF(IR[20:16])
Target=PC+SE(IR[15:0] << 2)

EX Execute ALUout = A + SE(IR[15:0]) # lw/sw
ALUout = A op B # rrr
if (A==B) PC = target # beq

Mem Memory MEM[ALUout] = B # sw
MDR = MEM[ALUout] #lw
RF(IR[15:11]) = ALUout # rrr

WB Writeback Reg(IR[20:16]) = MDR # lw

MultiMulti--cycle cycle
Example Example
(lw)(lw)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

MultiMulti--cycle Example (lw)cycle Example (lw) MicroprogrammingMicroprogramming

 Alternative way of specifying control
 FSM

– State – bubbleState bubble

– Control signals in bubble

– Next state given by signals on arc

– Not a great language for specifying complex
events

 Instead, treat as a programming problem

MicroprogrammingMicroprogramming

 Datapath remains the same
 Control is specified differently but does the same
 Each cycle a microprogram field specifies

required control signalsrequired control signals

Label Alu Src1 Src2 Reg Memory Pcwrite Next?

Fetch Add Pc 4 Read pc Alu Alu +1

Add Pc Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

Lw2 Read alu +1

Write mdr fetch

Exceptions: Big PictureExceptions: Big Picture

 Two types:
– Interrupt (asynchronous) or

– Trap (synchronous)p (y)

 Hardware handles initial reaction
 Then invokes a software exception handler

– By convention, at e.g. 0xC00

– O/S kernel provides code at the handler
address

CS/ECE 552: Introduction To Computer
Architecture 8

Exceptions: HardwareExceptions: Hardware

 Sets state that identifies cause of exception
– MIPS: in exception_code field of Cause register

 Changes to kernel mode for dangerous work
h dahead

 Disables interrupts
– MIPS: recorded in status register

 Saves current PC (MIPS: exception PC)
 Jumps to specific address (MIPS: 0x80000080)

– Like a surprise JAL – so can’t clobber $31

Exceptions: SoftwareExceptions: Software

 Exception handler:
– MIPS: .ktext at 0x80000080

 Set flag to detect incorrect entry
– Nested exception while in handler

 Save some registers
 Find exception type

– E.g. I/O interrupt or syscall
 Jump to specific exception handler

Exceptions: Software, cont’dExceptions: Software, cont’d

 Handle specific exception
 Jump to clean-up to resume user program
 Restore registers
 Reset flag that detects incorrect entry
 Atomically

– Restore previous mode
– Enable interrupts
– Jump back to program (using EPC)

Implementing ExceptionsImplementing Exceptions

 We worry only about hardware, not s/w
 IntCause

– 0 undefined instruction0 undefined instruction

– 1 arithmetic overflow

 Changes to the datapath
 New states in control FSM

FSM With FSM With
Exceptions Exceptions

ReviewReview
Type Control Datapath Time (CPI, cycle time)

Single-
cycle

Comb + end
update

No reuse 1 cycle, (imem + reg +
ALU + dmem)

Multi-
cycle

Comb + FSM
update

Reuse [3,5] cycles,
Max(imem, reg, ALU,
dmem)

We
want?

? ? ~1 cycle, Max(imem,
reg, ALU, dmem

 We will use pipelining to achieve last row

CS/ECE 552: Introduction To Computer
Architecture 9

Pipelining (4.5Pipelining (4.5--4.9)4.9)

 Summary
– Big Picture
– Datapath
– Control
– Data Hazards

 Stalls
 Forwarding

– Control Hazards
– Exceptions

Ideal PipeliningIdeal Pipelining
Comb. Logic
n Gate Delay

Gate
DelayL Gate

DelayL

L BW = ~(1/n)

n
--2

n
--2 BW = ~(2/n)

 Bandwidth increases linearly with pipeline depth
 Latency increases by latch delays

Gate
DelayL Gate

DelayL Gate
DelayLn--3

n--3
n--3 BW = ~(3/n)

Ideal PipeliningIdeal Pipelining

Cycle:
Instr:

1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

i F D X M W
ii+1 F D X M W
i+2 F D X M W
i+3 F D X M W
i+4 F D X M W

Pipelining IdealismsPipelining Idealisms

 Uniform subcomputations
– Can pipeline into stages with equal delay

 Identical computations
– Can fill pipeline with identical work

 Independent computations
– No relationships between work units

 Are these practical?
– No, but can get close enough to get significant

speedup

ComplicationsComplications

 Datapath
– Five (or more) instructions in flight

 Control
– Must correspond to multiple instructions

 Instructions may have
– data and control flow dependences

– I.e. units of work are not independent
 One may have to stall and wait for another

Program Data DependencesProgram Data Dependences

 True dependence (RAW)
– j cannot execute until i

produces its result
A ti d d (WAR)

)()(jRiD

)()(jDiR Anti-dependence (WAR)
– j cannot write its result until i

has read its sources
 Output dependence (WAW)

– j cannot write its result until i
has written its result

)()(jDiR

)()(jDiD

CS/ECE 552: Introduction To Computer
Architecture 10

Control DependencesControl Dependences

 Conditional branches
– Branch must execute to determine which

instruction to fetch next

– Instructions following a conditional branch are
control dependent on the branch instruction

Resolution of Pipeline HazardsResolution of Pipeline Hazards

 Pipeline hazards
– Potential violations of program dependences

– Must ensure program dependences are not violated

d l i Hazard resolution
– Static: compiler/programmer guarantees correctness

– Dynamic: hardware performs checks at runtime

 Pipeline interlock
– Hardware mechanism for dynamic hazard resolution

– Must detect and enforce dependences at runtime

Pipeline HazardsPipeline Hazards

 Necessary conditions:
– WAR: write stage earlier than read stage

 Is this possible in IF-RD-EX-MEM-WB ?

i li h i– WAW: write stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB ?

– RAW: read stage earlier than write stage
 Is this possible in IF-RD-EX-MEM-WB?

 If conditions not met, no need to resolve
 Check for both register and memory

Pipelined Pipelined DatapathDatapath

4 Add Add
result

IF/ID EX/MEM MEM/WB

M
u
x

0

1

Add

ID/EX

Instruction
memory

Address

32

0

result

Shift
left 2

In
st

ru
ct

io
n

PC

0
Write
data

M
u
x

1
Registers

Read
data 1

Read
data 2

Read
register 1

Read
register 2

16
Sign

extend

Write
register

Write
data

Read
data

1

ALU
result

M
u
x

ALU
Zero

Data
memory

Address

Pipelined ControlPipelined Control

Add

Branch

4 Add Add
result

rit
e

Control

EX

M

WB

M

WB

WB
IF/ID

PCSrc

ID/EX

EX/MEM

MEM/WB

M
u
x

0

1

PC

Instruction
memory

In
st

ru
ct

io
n

Instruction
[20– 16]

M
em

to
R

e
g

ALUOp

Branch

RegDst

ALUSrc

16 32Instruction
[15– 0]

0

0

M
u
x

0

1

Registers
Write
register

Write
data

Read
data 1

Read
data 2

Read
register 1

Read
register 2

Sign
extend

M
u
x

1

ALU
result

Zero

Write
data

Read
data

M
u
x

1

ALU
control

Shift
left 2

R
e

gW
r

MemRead

ALU

Instruction
[15– 11]

6

M
e

m
W

ri
te

Address
Data

memory

Address

Pipelined ControlPipelined Control

 Controlled by different instructions
 Decode instructions and pass the signals

down the pipep p
 Control sequencing is embedded in the

pipeline

CS/ECE 552: Introduction To Computer
Architecture 11

Data HazardsData Hazards

 Must first detect hazards

ID/EX.WriteRegister = IF/ID.ReadRegister1

ID/EX WriteRegister = IF/ID ReadRegister2ID/EX.WriteRegister = IF/ID.ReadRegister2

EX/MEM.WriteRegister = IF/ID.ReadRegister1

EX/MEM.WriteRegister = IF/ID.ReadRegister2

MEM/WB.WriteRegister = IF/ID.ReadRegister1

MEM/WB.WriteRegister = IF/ID.ReadRegister2

Forwarding Paths Forwarding Paths
(ALU instructions)(ALU instructions)

IF

ID

i+1: i+2: i+3:RD R1 R1 R1

FORWARDING

b

ALU

PATHS

a
i: R1

i: R1

i: R1

(i i+1)

Forwarding

via Path a

i+1:

i+1:

i+2:

(i i+2)

Forwarding
via Path b

(i i+3)

i writes R1
before i+3
reads R1

ALU

MEM

WB

R1 R1c

Implementation of ALU Implementation of ALU
ForwardingForwarding

Register
File

•

•
•

•

•

• •

Comp Comp Comp Comp

•

ALU

1 0 1 0

1 0 1 0

ALU

Comp Comp Comp Comp

•

•

•

•

Control Flow HazardsControl Flow Hazards

 What to do?
– Always stall

– Easy to implementy p

– Performs poorly

– 1/6th instructions are branches, each branch
takes 3 cycles

– CPI = 1 + 3 x 1/6 = 1.5 (lower bound)

Control Flow HazardsControl Flow Hazards

 Predict branch not taken
 Send sequential instructions down pipeline
 Kill instructions later if incorrect
 Must stop memory accesses and RF writes

– Including loads (why?)
 Late flush of instructions on misprediction

– Complex
– Global signal (wire delay)

ExceptionsExceptions

 Even worse: in one cycle
– I/O interrupt
– User trap to OS (EX)
– Illegal instruction (ID)
– Arithmetic overflow
– Hardware error
– Etc.

 Interrupt priorities must be supported

CS/ECE 552: Introduction To Computer
Architecture 12

ReviewReview

 Big Picture
 Datapath
 Control

– Data hazards
 Stalls
 Forwarding or bypassing

– Control flow hazards
 Branch prediction

 Exceptions

IBM RISC Experience IBM RISC Experience
[Agerwala and Cocke 1987][Agerwala and Cocke 1987]
 Internal IBM study: Limits of a scalar pipeline?
 Memory Bandwidth

– Fetch 1 instr/cycle from I-cache
40% of instructions are load/store (D cache)– 40% of instructions are load/store (D-cache)

 Code characteristics (dynamic)
– Loads – 25%
– Stores 15%
– ALU/RR – 40%
– Branches – 20%

 1/3 unconditional (always taken
 1/3 conditional taken, 1/3 conditional not taken

Simplify BranchesSimplify Branches

 Assume 90% can be PC-relative
– No register indirect, no register access
– Separate adder (like MIPS R3000)
– Branch penalty reduced

15% Overhead
from program
dependences

– Branch penalty reduced
 Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI = 0.87 IPC

PC-relative Schedulable Penalty
Yes (90%) Yes (50%) 0 cycle
Yes (90%) No (50%) 1 cycle
No (10%) Yes (50%) 1 cycle
No (10%) No (50%) 2 cycles

Processor PerformanceProcessor Performance
Processor Performance = ---------------

Time

Program

Instructions Cycles Time= X X

 In the 1980’s (decade of pipelining):
– CPI: 5.0 => 1.15

 In the 1990’s (decade of superscalar):
– CPI: 1.15 => 0.5 (best case)

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

Revisit Amdahl’s LawRevisit Amdahl’s Law

 Sequential bottleneck
 Even if v is infinite

– Performance limited by nonvectorizable

f
v
f

f
v

 1

1

1

1
lim

Performance limited by nonvectorizable
portion (1-f)

No. of
Processors

N

Time
1

h 1 - h

1 - f
f

Pipelined Performance ModelPipelined Performance Model

Pipeline
Depth

N

1

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled

(stalled)

1-g g

1

CS/ECE 552: Introduction To Computer
Architecture 13

Pipeline
Depth

N

1

Pipelined Performance ModelPipelined Performance Model

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled

(stalled)

1-g g

1

Pipelined Performance ModelPipelined Performance Model

Pipeline
Depth

N

1

 Tyranny of Amdahl’s Law [Bob Colwell]
– When g is even slightly below 100%, a big

performance hit will result
– Stalled cycles are the key adversary and must be

minimized as much as possible

1-g g

1

Motivation for SuperscalarMotivation for Superscalar
[Agerwala and Cocke][Agerwala and Cocke]

5

6

7

8

 p

n=12

n=100
Speedup jumps from 3 to 4.3

for N=6, f=0.8, but s =2 instead
of s=1 (scalar)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Vectorizability f

S
pe

ed
up

 p

n=4

n=6

n=6,s=2

Typical Range

Superscalar ProposalSuperscalar Proposal

 Moderate tyranny of Amdahl’s Law
– Ease sequential bottleneck

– More generally applicableg y pp

– Robust (less sensitive to f)

– Revised Amdahl’s Law:

v
f

s
f

Speedup

1
1

Limits on Instruction Level Limits on Instruction Level
Parallelism (ILP)Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Superscalar ProposalSuperscalar Proposal

 Go beyond single instruction pipeline,
achieve IPC > 1

 Dispatch multiple instructions per cycle
P id ll li bl f f Provide more generally applicable form of
concurrency (not just vectors)

 Geared for sequential code that is hard to
parallelize otherwise

 Exploit fine-grained or instruction-level
parallelism (ILP)

CS/ECE 552: Introduction To Computer
Architecture 14

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991][Jouppi, DECWRL 1991]
 Scalar pipelined
 Superpipelined
 SuperscalarSuperscalar
 VLIW
 Superpipelined superscalar

Review SummaryReview Summary

 Ch. 1: Intro & performance
 Ch. 2: Instruction Sets
 Ch. 3: Arithmetic I
 Ch. 4: Data path, control, pipeliningp , , p p g
 Details

– Fri. 10/29 2:25-3:30 (1 hour) in EH2317
– Closed books/notes/homeworks
– One page handwritten cheatsheet for quick reference
– A mix of short answer, design, analysis problems

