ECE/CS 552: Midterm Review
Instructor: Mikko H Lipasti

Fall 2010
University of Wisconsin-Madison

Lecture notes based on notes by Mark Hill and
John P. Shen

Updated by Mikko Lipasti

Computer Architecture

e Exercise in engineering tradeoff analysis
— Find the fastest/cheapest/power-efficient/etc. solution
— Optimization problem with 100s of variables
e All the variables are changing
— At non-uniform rates
— With inflection points

- Only one guarantee: Today’s right answer will be
wrong tomorrow

e Two high-level effects:
— Technology push
— Application Pull

Abstraction

o Difference between interface and
implementation

— Interface: WHAT something does
— Implementation: HOW it does so

What's the Big Deal?

Application Program
o Tower of abstraction 65302
e Complex interfaces Operating System
implemented by layers below ng;g"gf Cs537
e Abstraction hides detail _
e Hundreds of engineers build — -
Digital Logic
one product ECE352
e Complexity unmanageable E'“‘é‘g‘é%i‘(;““i's
otherwise Semiconductor devices
ECE335

Performance vs. Design Time

e Time to market is critically important
e E.g., a new design may take 3 years
— It will be 3 times faster
— But if technology improves 50%/year
—In3years 1.5 =3.38
— So the new design is worse!
(unless it also employs new technology)

Bottom Line

o Designers must know BOTH software and
hardware

e Both contribute to layers of abstraction
o |C costs and performance
e Compilers and Operating Systems

CS/ECE 552: Introduction To Computer
Architecture

Performance

e Time and performance: Machine A n times
faster than Machine B

— Iff Time(B)/Time(A) =n
e [ron Law: Performance = Time/program =

Instructions Cycles Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

Performance cont'd

e Other Metrics: MIPS and MFLOPS
— Beware of peak and omitted details
e Benchmarks: SPEC2000 (95 in text)
e Summarize performance:
— AM for time
— HM for rate
. 1
— GM for ratio Speedup = —
e Amdahl’s Law: 1-f iy

Ch 2 Summary

e Basics

o Registers and ALU ops
e Memory and load/store
e Branches and jumps

e Addressing Modes

Summary: Instruction Formats

R: opcode rs rt rd shamt function
6 5 5 5 5 6

I: opcode rs rt address/immediate
6 5 5 16

J: opcode addr
6 26

o Instruction decode:
— Read instruction bits
— Activate control signals

Conclusions

e Simple and regular
— Constant length instructions, fields in same place
e Small and fast
— Small number of operands in registers
e Compromises inevitable
— Pipelining should not be hindered
e Make common case fast!
e Backwards compatibility!

Basic Arithmetic and the ALU

o Number representations: 2’s complement,
unsigned

e Addition/Subtraction
e Add/Sub ALU
e Full adder, ripple carry, subtraction
e Carry-lookahead addition
e Logical operations
e and, or, xor, nor, shifts
e Overflow

CS/ECE 552: Introduction To Computer
Architecture

Unsigned Integers

e f(b31..b0) =b31 x 231+ ... + b1 x 21 +b0x 20

e Treat as normal binary number
E.g.0...01101010101
S1x27+1x28+0X25+1x24+1x25+0x21+1x20
=128+64+16+4+1=213

e Max f(111...11) = 232 -1 = 4,294,967,295

e Min f(000...00) =0

e Range [0,232-1] => # values (232-1) -0 + 1 = 232

Signed Integers

e 2’s complement
f(b31 ... b1 b0) = -b31 x 23 + ... bl x 2! + b0 x 20
e Max f(0111...11) = 231 — 1 = 2147483647
e Min f(100...00) = -231 = -2147483648
(asymmetric)
e Range[-231,231-1] => # values(231-1 - -231 _ 1) =2%
eE.g.-6
-000...0110 =>111...1001 + 1 =>111...1010

Full Adder

o Full adder (a,b,c;,) => (Cour S)

® ., = two or more of (a, b, ¢;,)

e s = exactly one or three of (a,b,c;,)

Combined Ripple-carry
Adder/Subtractor

e Control = 1 => subtract
e XOR B with control and set c;, to control

4-bit Carry Lookahead Adder

Co
Cq =— Carry Lookahead Block
Efapsasba gz2p2azby gip1aiby goPoagho
AR TR
C3 C2 c1 €0
! ! !]
S3 S2 S1 So

Hierarchical Carry Lookahead
for 16 bits

Co
C15%— Carry Lookahead Block
G P abizas| GP abgii | GP asrbaz| GP apsbos
! RN N
C1. Cg [€0
' } ! }
S12-15 Sg-11 S4-7 S0-3

CS/ECE 552: Introduction To Computer
Architecture

CLA: Compute G’s and P’s

CLA: Compute Carries

d12 - 915 ds- 911 J4 - 97 do-03
P12 - P15 Ps - P11 P4 - P7 Po - P3

All Together
invert carryjy operation
S)
x result
r—D §
b ~ L
2 Add [

Addition Overflow

e2+3=5>4:010+011=101=?-3<0
- Xisf(2)

e-1+-4:111+100=011>0
-VYis~f(2)

Overflow = f(2) * ~(a2)*~(b2) + ~f(2) * a(2) * b(2)

Subtraction Overflow

o No overflow on a-b if signs are the same
e Neg — pos => neg ;; overflow otherwise

® Pos — neg => pos ;; overflow otherwise
Overflow = f(2) * ~(a2)*(b2) + ~f(2) * a(2) * ~b(2)

What to do on Overflow?

e Ignore ! (C language semantics)
— What about Java? (try/catch?)
e Flag — condition code
o Sticky flag — e.g. for floating point
— Otherwise gets in the way of fast hardware
e Trap — possibly maskable

— MIPS has e.g. add that traps, addu that does
not

CS/ECE 552: Introduction To Computer
Architecture

Ch. 3 Summary

e Arithmetic

— Carry-select, Carry-save

— Overflow, negative

— More (multiply/divide/FP) later
e Logical

— Shift, and, or

e Binary representations, signed/unsigned

— Full adder, ripple-carry, carry lookahead

Ch. 4 Processor Implementation

e Heart of 552 — key to project
— Sequential logic design review (brief)
— Clock methodology (FSD)
— Datapath — 1 CPI
Single instruction, 2’s complement, unsigned
— Control
— Multiple cycle implementation (information only)
— Microprogramming (information only)
— Exceptions

Clocking Methology
e Motivation

— Use Fully Synchronous Design (FSD)
Just a convention to simplify design process
Restricts design freedom

Not really feasible in real designs
Even in 554 you will violate FSD

— Design data and control without considering clock

Eliminates complexity, can guarantee timing correctness

Our Methodology

e Only flip-flops
e All on the same edge (e.g. falling)
o All with same clock
— No need to draw clock signals
o All logic finishes in one cycle

R)

T
[[

Our Methodology, cont'd

examples

I
write

new @ currep
e No clock gating!
— Book has bad write AND clock

e Correct design: ent
il

Delayed Clocks (Gating)

Clock

Gated clock

X
%
e Problem:

— Some flip-flops receive gated clock late
— Data signal may violate setup & hold req’t

CS/ECE 552: Introduction To Computer
Architecture

FSD Clocking Rules All Together

Clock E E I |
Y ﬁ i AL :

Clock

® T = CycCle time
® T = FF setup time requirement
® T,.q = FF hold time requirement
e T = FF combinational delay
® T..my = Combinational delay
e FSD Rules:

- Tclock > TFF + Tcomb + Tsetup

- TFF + Tcomb > Thold

B_Adx B
x|

DFF Bit Slice
1 H 2 CE D
Register File~
A
Data_C(i)
N
C_Adx gdx
4| Decoder e _ e
— e
v e
A_Adx A = 15 e 0
T3 ggcxuda . DFF ‘ ‘DFF ‘ ‘DFF ‘15
A . =

C = Write Port Data A(i) Data B(i) I——

A.B = Read Ports

Multi-cycle Implementation Multi-cycle Ctrl Signals

e Clock cycle = max(i-mem,reg-read+reg-write, |
ALU, d-mem) I
e Reuse combination logic on different cycles i roren
— One memory
— One ALU without other adders -
e But
— Control is more complex (later)

— Need new registers to save values (e.g. IR)
» Used again on later cycles
« Logic that computes signals is reused

CS/ECE 552: Introduction To Computer
Architecture

Multi-cycle Steps

Step |Description | Sample Actions

IF |Fetch IR=MEM[PC]
PC=PC+4

ID Decode A=RF(IR[25:21])
B=RF(IR[20:16])
Target=PC+SE(IR[15:0] << 2)

EX Execute ALUout = A + SE(IR[15:0]) # Iw/sw
ALUout=Aop B #rrr
if (A==B) PC = target # beq

Mem Memory MEM[ALUout] = B # sw
MDR = MEM[ALUout] #lw

RF(IR[15:11]) = ALUout # rrr

WB | Writeback |Reg(IR[20:16]) = MDR # Iw

12

/ ALUSIcA=0
ALUSICB =11

ALUOp =00

N

Multi-cycle
Example s@t

(Iw)

ALUSrcA=1
ALUSrcB = 00
ALUOp =10

ALUSrcA=1
ALUSIcB = 10
ALUOp =00

MemRead
lorD =1

RegDst = 0

PCWrite
PCSource = 10

MEM RegDst = 1
RegWrite

MemtoReg =

MemWrite
lorD=1

WB

RegWrite
MemtoReg = 1

Multi-cycle Example (Iw)

(1

Microprogramming

e Alternative way of specifying control
o FSM

— State — bubble

— Control signals in bubble

— Next state given by signals on arc

— Not a great language for specifying complex
events

e Instead, treat as a programming problem

Microprogramming

e Datapath remains the same
e Control is specified differently but does the same

e Each cycle a microprogram field specifies
required control signals

Label |Alu |Srcl |Src2 Reg Memory | Pcwrite | Next?
Fetch [Add |Pc |4 Readpc |Alu Alu +1
Add |Pc |Extshft | Read Dispatch 1
Meml [Add |A Extend Dispatch 2
Lw2 Read alu +1
Write mdr fetch

Exceptions: Big Picture

e Two types:
— Interrupt (asynchronous) or
— Trap (synchronous)

e Hardware handles initial reaction

e Then invokes a software exception handler
— By convention, at e.g. 0xC00

— OIS kernel provides code at the handler
address

CS/ECE 552: Introduction To Computer
Architecture

Exceptions: Hardware

e Sets state that identifies cause of exception
— MIPS: in exception_code field of Cause register

e Changes to kernel mode for dangerous work
ahead

e Disables interrupts
— MIPS: recorded in status register

e Saves current PC (MIPS: exception PC)

e Jumps to specific address (MIPS: 0x80000080)
— Like a surprise JAL — so can’t clobber $31

Exceptions: Software

e Exception handler:
— MIPS: ktext at 0x80000080
e Set flag to detect incorrect entry
— Nested exception while in handler
e Save some registers
e Find exception type
— E.g. I/O interrupt or syscall
e Jump to specific exception handler

Exceptions: Software, cont'd

e Handle specific exception
e Jump to clean-up to resume user program
o Restore registers
o Reset flag that detects incorrect entry
e Atomically
— Restore previous mode
— Enable interrupts
— Jump back to program (using EPC)

Implementing Exceptions

o We worry only about hardware, not s/w
e IntCause
— 0 undefined instruction
— 1 arithmetic overflow
e Changes to the datapath
e New states in control FSM

FSM With
Exceptions

Review

Type Control Datapath | Time (CPI, cycle time)

Single- |Comb +end Noreuse |1 cycle, (imem +reg +

cycle update ALU + dmem)

Multi- | Comb + FSM Reuse [3,5] cycles,

cycle update Max(imem, reg, ALU,
dmem)

We ? ? ~1 cycle, Max(imem,

want? reg, ALU, dmem

o \We will use pipelining to achieve last row

CS/ECE 552: Introduction To Computer
Architecture

Pipelining (4.5-4.9)

e Summary

— Big Picture

— Datapath

— Control

— Data Hazards
Stalls
Forwarding

— Control Hazards

— Exceptions

Ideal Pipelining

1— Sk b5 BW = ~(1/n)
N Gat n
‘—.—{ 3 Delay I——!» | 5 5% n_» BW = ~(2/n)
n n n Gat
%3‘8&?4—"5& Beyl»ﬂ|3 SE5}--Bw = ~@m)

e Bandwidth increases linearly with pipeline depth
e Latency increases by latch delays

Ideal Pipelining

Cycle: (1|2 |13|4(5(6(7(8(9(11|1
Instr: 012
i F |D|X|M|W,|

i+1 FID|X|M|W

i+2 F DX MW

i+3 F D |X|M|W,|

i+4 F D[X|M|W

Pipelining Idealisms

e Uniform subcomputations
— Can pipeline into stages with equal delay
e |dentical computations
- Can fill pipeline with identical work
e Independent computations
- No relationships between work units
e Are these practical?

— No, but can get close enough to get significant
speedup

Complications

e Datapath

— Five (or more) instructions in flight
e Control

— Must correspond to multiple instructions
e Instructions may have

— data and control flow dependences

— l.e. units of work are not independent
One may have to stall and wait for another

Program Data Dependences

e True dependence (RAW) D(i)nR(j) # ¢
— j cannot execute until i
produces its result

e Anti-dependence (WAR) R(i)nD(j)# ¢
— j cannot write its result until i
has read its sources
o Output dependence (WAW) D(i)nD(j) # ¢
— j cannot write its result until i
has written its result

CS/ECE 552: Introduction To Computer
Architecture

Control Dependences Resolution of Pipeline Hazards

e Conditional branches

— Branch must execute to determine which
instruction to fetch next

e Pipeline hazards
— Potential violations of program dependences

— Must ensure program dependences are not violated
— Instructions following a conditional branch are e Hazard resolution

control dependent on the branch instruction — Static: compiler/programmer guarantees correctness

— Dynamic: hardware performs checks at runtime

e Pipeline interlock
— Hardware mechanism for dynamic hazard resolution
— Must detect and enforce dependences at runtime

Pipeline Hazards Pipelined Datapath

e Necessary conditions:
— WAR: write stage earlier than read stage
Is this possible in IF-RD-EX-MEM-WB ?
— WAW: write stage earlier than write stage
Is this possible in IF-RD-EX-MEM-WB ?
— RAW: read stage earlier than write stage
Is this possible in IF-RD-EX-MEM-WB?
e |If conditions not met, no need to resolve
e Check for both register and memory

Pipelined Control

Pipelined Control
=

e Controlled by different instructions

e Decode instructions and pass the signals
down the pipe

e Control sequencing is embedded in the
pipeline

CS/ECE 552: Introduction To Computer
Architecture

Data Hazards

e Must first detect hazards
ID/EX.WriteRegister = IF/ID.ReadRegisterl
ID/EX.WriteRegister = IF/ID.ReadRegister2
EX/MEM.WriteRegister = IF/ID.ReadRegisterl
EX/MEM.WriteRegister = IF/ID.ReadRegister2
MEM/WB.WriteRegister = IF/ID.ReadRegisterl
MEM/WB.WriteRegister = IF/ID.ReadRegister2

Forwarding Paths

(ALU ingtructions)

i+l =—R1 | i+2: =—R1| i+3: «—R1

iiR1=— i+1:=— R1|i+20 <—R1

iRl -— i+l -
iRl =—
(i —i+1) (i —»i+2) (i »i+3)
Forwarding Forwarding iwrites R1
via Path a via Path b before i+3

reads R1

Implementation of ALU

Forwc?_rgikrlgk_
T EI . Register
(=
“‘—%@ﬁ' %
s N
e E—

Control Flow Hazards

e What to do?
— Always stall
— Easy to implement
— Performs poorly

— 1/6% instructions are branches, each branch
takes 3 cycles

—CPI=1+3x1/6 =1.5 (lower bound)

Control Flow Hazards

e Predict branch not taken

e Send sequential instructions down pipeline

o Kill instructions later if incorrect

e Must stop memory accesses and RF writes
— Including loads (why?)

o Late flush of instructions on misprediction
— Complex
— Global signal (wire delay)

Exceptions

e Even worse: in one cycle
— 1/O interrupt
— User trap to OS (EX)
— Illegal instruction (1D)
— Arithmetic overflow
— Hardware error
- Etc.
e Interrupt priorities must be supported

CS/ECE 552: Introduction To Computer
Architecture

11

Review

e Big Picture
e Datapath
e Control
— Data hazards
Stalls
Forwarding or bypassing
— Control flow hazards
Branch prediction
e Exceptions

IBM RISC Experience
[Agerwala and Cocke 1987]

e Internal IBM study: Limits of a scalar pipeline?
e Memory Bandwidth
— Fetch 1 instr/cycle from I-cache
- 40% of instructions are load/store (D-cache)
e Code characteristics (dynamic)
— Loads - 25%
— Stores 15%
— ALU/RR - 40%
— Branches — 20%
1/3 unconditional (always taken
1/3 conditional taken, 1/3 conditional not taken

Simplify Branches

e Assume 90% can be PC-relative
— No register indirect, no register access
— Separate adder (like MIPS R3000)
- Branch penalty reduced

15% Overhead
from program

dependences

e Total CPI: 1+ 0.063 + 0.085=1.15 CPI = 0.87 IPC

PC-relative |Schedulable |Penalty
Yes (90%) | Yes (50%) |0 cycle
Yes (90%) |No (50%) |1 cycle
No (10%) |Yes (50%) |1 cycle
No (10%) [No (50%) |2 cycles

Processor Performance

Processor Performance = -----------——
Program

Instructions Cycles Time
Program Instruction Cycle

(code size) (CPI) ‘ (cycle time)
e In the 1980’s (decade of pipelining):

- CPI:5.0=>1.15
e In the 1990’s (decade of superscalar):

— CPI: 1.15 => 0.5 (best case)

Revisit Amdahl’'s Law

e Sequential bottleneck
e Even if v is infinite

Iim; =—
Vo f 1-f

1
1-f+—
v

portion (1-f)

— Performance limited by nonvectorizable

No. of
Processors

Time

Pipelined Performance Model

N-L

Pipeline
Depth

1

—1g | g |

e g = fraction of time pipeline is filled

e 1-g = fraction of time pipeline is not filled
(stalled)

CS/ECE 552: Introduction To Computer

Architecture

12

Pipelined Performance Model

N -

Pipeline
Depth

1

ja—1g | g |

e g = fraction of time pipeline is filled

e 1-g = fraction of time pipeline is not filled
(stalled)

Pipelined Performance Model

N -

Pipeline
Depth

1

ol |

e Tyranny of Amdahl’s Law [Bob Colwell]
— When g is even slightly below 100%, a big
performance hit will result
— Stalled cycles are the key adversary and must be
minimized as much as possible

Motivation for Superscalar
[Agerwala and Cocke]

n=10Q

~

Speedup jumps from 3 to 4.3
for N=6, f=0.8, but s =2 instead
of s=1 (scalar)

Speedup p
Q.-

BN W s

Typical Range

2

0.2 0.4 0.6 0.8 1
Vectorizability f

Superscalar Proposal

e Moderate tyranny of Amdahl’s Law
— Ease sequential bottleneck
— More generally applicable
— Robust (less sensitive to f)
— Revised Amdahl’s Law:

Speedup = T 7
7_{_7

S \

Limits on Instruction Level
Parallelism (ILP

Weiss and Smith [1984] 158

Sohi and Vajapeyam [1987] 181

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)
Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00

Jouppi and Wall [1988] 240

Johnson [1991] 2.50

Acosta et al. [1986] 279

Wedig [1982] 3.00

Butler et al. [1991] 58

Melvin and Patt [1991] 6

‘Wall [1991] 7 (Jouppi disagreed)
Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

Superscalar Proposal

e Go beyond single instruction pipeline,
achieve IPC > 1

e Dispatch multiple instructions per cycle

e Provide more generally applicable form of
concurrency (not just vectors)

e Geared for sequential code that is hard to
parallelize otherwise

e Exploit fine-grained or instruction-level
parallelism (ILP)

CS/ECE 552: Introduction To Computer
Architecture

13

Classifying ILP Machines
[Jouppi, DECWRL 1991]

e Scalar pipelined
e Superpipelined
e Superscalar

e VLIW

e Superpipelined superscalar

Review Summary

e Ch. 1: Intro & performance
e Ch. 2: Instruction Sets
e Ch. 3: Arithmetic |
e Ch. 4: Data path, control, pipelining
e Details
— Fri. 10/29 2:25-3:30 (1 hour) in EH2317
— Closed books/notes/homeworks
— One page handwritten cheatsheet for quick reference
— A mix of short answer, design, analysis problems

CS/ECE 552: Introduction To Computer

Architecture

14

