

ECE/CS 552: Introduction to Computer Architecture

ASSIGNMENT #2

Due Date: At the beginning of lecture, October 6
th

, 2010

This homework is to be done individually. Total 4 Questions, 100 points

1. (10 pts.) Do the following calculations below in single precision floating point

representation. Show the floating point binary values for the operands, show the result

of the add or subtract, then show the final normalized binary representation.

(1) 0.5 + 0.3125;

(2) 12 – 3.875.

Solution: Each of the numbers can be represented in the following single precision

floating point format.

Sign (1 bit) Exponent (8 bits) (1), Fraction (23 bits)

(1)

0.5:

0 01111110 (1).0000 0000 0000 0000 0000 000

0.3125:

0 01111101 (1). 0100 0000 0000 0000 0000 000

0.3125 after aligning the exponent:

0 01111110 (0).1010 0000 0000 0000 0000 000

0.3125 + 0.5:

0 01111110 (1). 1010 0000 0000 0000 0000 000

Normalize the result:

0 01111110 1010 0000 0000 0000 0000 000

(2)

12:

0 10000010 (1).1000 0000 0000 0000 0000 000

3.875

0 10000000 (1).1111 0000 0000 0000 0000 000

3.875 after aligning the exponent:

0 10000010 (0).0111 1100 0000 0000 0000 000

12-3.875: use the 2’s complement to represent the fractions, and do addition for two

operands:

0 1.100000 … (all zeros)

+ 1 1.100001 … (all zeros)

 0 1.000001 … (all zeros)

Therefore the result is:

0 10000010 0000 0100 0000 0000 0000 000

2. (10 pts.) We wish to add the instruction jalr (jump and link register. e.g. jalr $rs:

$ra = PC+8; PC = $rs) to the single-cycle datapath described in the book. Add any

necessary datapaths and control signals to the single-cycle datapath of Figure 1 below.

Draw your datapath neatly (hand writing OK). Specify the settings of control signals

in table 1. The third and fourth rows in the table are used to specify values of new

control signals you used in your design.

Solution: This is an example solution. Student can come up with their own solutions

as long as the instruction, datapath and control signals are consistent.

First, define the instruction format:

Jalr $rs: R-type

Opcode (00) Rs = rs Rt = 0 Rd = ra (31) shamt = 0 funct

We need to add two paths for our datapath: 1. old PC value => RF; 2. RF => new PC

value. (See below, modules in yellow are additional modules)

Table 1: Control settings for jalr

Ctrl Signal RegDst ALUSrc MemtoReg RegWrite MemRead MemWrite Branch

Value 1 x 0 (or x) 1 0 (or x) 0 0

Ctrl Signal AddMux1 AddMux2

Value 1 1

3. (40 pts.) Design a 16-bit register file (RF) using Quartus II.

Specifications:

 1) Design a Register-File of sixteen 16-bit registers. It has three 16-bit data buses

ReadData1, ReadData2 and WriteData, three 4-bit address buses ReadReg1,

ReadReg2 and WriteReg, a write control signal RegWrite and Clock, Reset inputs.

The RF is edge triggered (flip flops should be used as your building block). The data

on ReadData1 and ReadData2 corresponds to addresses on ReadReg1 and ReadReg2

respectively. The data on WriteData gets written into the register specified by

WriteReg at the rising edge of the clock when the RegWrite signal is high.

Furthermore, $0 always reads zero. All registers are reset to x0000 when Reset is low.

Figure 1 shows the block diagram of the RF.

 2) The RF should support simultaneous reads and writes (2 reads and 1 write in

the same cycle). For this project, you do not need to handle read-after-write hazard

(when register being written is one of the registers being read from). We assume an

external bypass mechanism will be used in the system.

3) You are only allowed to use schematics in your design. No verilog HDL is

allowed. Also, you are only allowed to use primitives in Quartus II. That is, no

megafunctions or maxplus2 library components can be used.

 4) Some tips: Do not gate clock signal. And, multiplexor has poor scalability for

large fan-ins. Instead, you may use tri-state buffer (available in Quartus primitives) to

control the output register databus.

REGISTER

FILE

ReadReg #1

ReadReg #2

ReadData #1

ReadData #2
WriteReg

WriteData

RegWrite Clock

Reset

Reset

Figure 2. Register File

You should turn in:

1) A schematic of your register file. If your top level design contains low level

functional blocks (e.g. you generate symbols and use them in the top level), you

should also provide the schematic of those functional blocks.

2) A testbench (vector waveform file .vwf) for your design. You should provide

enough test cases in your testbench in order to test the full functionality of your

design. The test bench must contain and can be longer than the following code

segment (“Rx <= value” here means write value into Rx. Each line indicates one

clock cycle):

Expected values are in blue:

!Reset

R1 <= 0x00FF; Read R0, R2; # R0 = R2 = 0x0000

Read R0, R1; # R0= 0x0000, R1 = 0x00FF

R2 <= 0xFF00; Read R0, R1; # R0= 0x0000, R1 = 0x00FF

R8 <= 0x0001; Read R1, R2; # R1= 0x00FF, R2 = 0xFF00

Read R2, R8; # R2= 0xFF00, R8 = 0x0001

R15 <= 0x8000; Read R1, R8; # R1= 0x00FF, R8 = 0x0001

R0 <= 0xFFFF; Read R2, R8; # R2= 0xFF00, R8 = 0x0001

Read R0, R15; # R0= 0x0000, R15 = 0x8000

!Reset;

Read R1, R2; # R1 = R2 = 0x0000

Read R8, R15; # R8 = R15 = 0x0000

……

3) A simulation result of your design. Functional simulation is required. In your

simulation result, please highlight and annotate the input values ReadReg1,

ReadReg2, WriteReg, WriteData and the output values ReadData1 and

ReadData2 in the waveform. Represent the 4-bit and 16-bit waveform values in

hexadecimal.

4. (40 pts.) Design a 16-bit ALU using Quartus II.

Specifications:

1) Design a 16-bit Carry Look-ahead Adder (CLA). You may start from 4-bit

CLA with four full adders (FA) and a 4-bit Look-ahead Carry Unit (LCU). The LCU

is used to take the propagate (p) and generate (g) signal from FAs and generates the

carry signal c4 and group propagate (PG) and group generate (GG). A sample

diagram of 4-bit CLA is shown in figure 3.

You can use four 4-bit CLA to create a 16-bit CLA. The structure is similar and is

shown in figure 4.

2) Extend the CLA into a 16-bit Arithmetic Logic Unit (ALU) that can perform

2’s compliment addition, subtraction, bit-wise AND and bit-wise OR operation. A

control bus opr[1:0] is used to decide which operation should be performed. Your

ALU should be able to detect overflow when performing addition and subtraction. A

simple block diagram is shown below.

Figure 5. ALU

3) You are only allowed to use schematic or structural Verilog HDL in your

design. No behavior verilog HDL is allowed. Also, for schematic design， only

primitives in Quartus II are allowed.

You should turn in:

1) A schematic or verilog HDL code of your design. If your top level design

contains low level functional blocks (e.g. you generate symbols and use them in the

top level), you should also provide the schematic or verilog HDL code of those

functional blocks.

ALU

Source #1

Source #2

ALUResult

Overflow

Operation

Figure 3. 4-bit CLA Figure 4. 16-bit CLA

2) A testbench (vector waveform file .vwf) for your design. You should have at

least fifteen cases to show correct functionality of your design, including the

following ten cases:

Expected values are in blue:

a. 0x00FF + 0x0F00; # Result = 0x0FFF

b. 0x0FFF + 0x0001; # Result = 0x1000

c. 0x10FF + 0xFF01; # Result = 0x1000

d. 0x1000 + 0xFFFF; # Result = 0x0FFF

e. 0xFFFF + 0x0001; # Result = 0x0000

f. 0x7FFF – 0x0FFF; # Result = 0x7000

g. 0x1000 – 0x0001; # Result = 0x0FFF

h. 0x7FFF – 0xFFFF; # Result = 0x8000, overflow

i. 0xAAAA AND 0x5555; # Result = 0x0000

j. 0xAAAA OR 0x5555. # Result = 0xFFFF

3) A simulation result of your design. Functional simulation is required. In your

simulation result, please highlight and annotate the two input values Source1,

Source2, and the output value ALUResult as well as Overflow in the waveform.

Represent the 16-bit waveform values in hexadecimal. You are not required but

encouraged to put on the simulation result of your 4-bit CLA (not graded).

