
ECE/CS 552: Introduction to Computer Architecture 

ASSIGNMENT #3 

Due Date: At the beginning of lecture, October 20
th

, 2010 

This homework is to be done individually.           Total 4 Questions, 100 points 

 

 

1. (20 pts.) In this exercise, we examine how data dependencies affect execution in 

the basic five-stage pipeline described in the textbook. Problems in this exercise refer 

to the following sequence of instructions: 

 

a. lw $1, 40 ($6) 

add $6, $2, $2 

sw $6, 10($3) 

b. lw $5, -16 ($5) 

sw $5, -16 ($5) 

add $5, $5, $5 

 

1) (3 pts.) Indicate dependences and their type. 

 

 

Solution:  

 Involved Reg #1 Involved Reg #2 Type of Dependency 

Sequence a 
Rs of lw Rd of add Anti 

Rd of add Rt of sw True 

Sequence b 

Rs of lw Rt of lw Anti 

Rt of lw Rt of sw True 

Rt of lw Rs of sw True 

Rt of lw Rs of add True 

Rt of lw Rt of add True 

Rt of lw Rd of add Output 

Rs of lw Rd of add Anti 

Rt of sw Rd of add Anti 

Rs of sw Rd of add Anti 

Rs of add Rd of add Anti 

Rt of add Rd of add Anti 

 

 

 



2) (3 pts.)Assume there is no forwarding in this pipelined processor. Indicate hazards 

and add “nop” instructions to eliminate them. 

 

Solution: Hazards exist in true dependencies in the previous table. 

After inserting NOP, the hazards are eliminated and the new instruction sequences 

are: 

a. lw $1, 40 ($6) 

add $6, $2, $2 

NOP 

NOP 

sw $6, 10($3) 

b. lw $5, -16 ($5) 

NOP 

NOP 

sw $5, -16 ($5) 

add $5, $5, $5 

 

3) (3 pts.)Assume there is full forwarding. Indicate hazards and add “nop” 

instructions to eliminate them. 

 

Solution: With full forwarding, only the True dependency in lw causes hazard 

(underlined in the dependency table). The new instruction sequences are: 

a. lw $1, 40 ($6) 

add $6, $2, $2 

sw $6, 10($3) 

b. lw $5, -16 ($5) 

NOP 

sw $5, -16 ($5) 

add $5, $5, $5 

 



The remaining problems in this exercise assume the following clock cycle times: 

 

 Without forwarding With full forwarding With ALU-ALU forwarding only 

a. 300 ps 400 ps 360 ps 

b. 200 ps 250 ps 220 ps 

 

4) (4 pts)What is the total execution time of this instruction sequence without 

forwarding and with full forwarding? What is the speed-up achieved by adding 

full forwarding to a pipeline that had no forwarding? 

 

Solution: with full forwarding, a needs 3 cycles and b needs 4 cycles. 

With no forwarding, both a and b needs 5 cycles. 

Therefore speedup for a = (5*300)/(3*400)=1.25 

For b = 5*200 / 4*250 = 1. 

 

 

5) (3 pts.)Add “nop” instructions to this code to eliminate hazards if there is 

ALU-ALU forwarding only (no forwarding from the MEM to EX stage).  

 

Solution:  

a. lw $1, 40 ($6) 

add $6, $2, $2 

sw $6, 10($3) 

b. lw $5, -16 ($5) 

NOP 

NOP 

sw $5, -16 ($5) 

add $5, $5, $5 

 

 

 

6) (4 pts.)What is the total execution time of this instruction sequence with only 

ALU_ALU forwarding? What is the speed-up over a no-forwarding pipeline?  

 

Solution: Total execution time of a = 360 * 3 = 1080 ps 

Total execution time of b = 220 * 5 =1100 ps 

Speedup: a = 1500/1080 = 1.39 

b = 1000/1100 = 0.91



2. (20 pts.) This exercise examines the accuracy of various branch predictors for the 

following repeating pattern (e.g., in a loop) of branch outcomes: 

 Branch Outcomes 

a. T, T, NT, T 

b. T, T, T, NT, NT 

 

1) (3 pts.)What is the accuracy of always-taken and always-not-taken predictors for 

this sequence of branch outcomes? 

Solution: 

 Always Taken Predictor Always Not Taken Predictor 

a 75% 25% 

b 60% 40% 

 

 

2) (3 pts.)What is the accuracy of the two-bit predictor for the first four branches in 

this pattern, assuming that the predictor starts off in the bottom left state (predict 

not taken) from Figure 1, or Figure 4.63 from the textbook (4
th

 edition).  

 
 

Figure 1: State Machine of 2-bit branch predictor 

 

Solution:  

a: 0%; b: 20% (only the third T will be predicted correctly) 

 

 



3) (3 pts.)What is the accuracy of the two-bit predictor if this pattern is repeated 

forever? 

Solution: a: approximately 75% (NT will be predicted wrong) 

        b: approximately 40% (2 NT’s and the first T will be predicted wrong) 

 

4) (5 pts.) Design a predictor that would achieve a perfect accuracy if this pattern is 

repeated forever. Your predictor should be a sequential circuit with one output 

that provides a prediction (1 for taken, 0 for not taken) and no inputs other than 

the clock and the control signal that indicates that the instruction is a conditional 

branch.  

 

Solution: The predictor can be built as a Moore state machine. Here are examples 

using one-hot state machine: 

 

a: 

 

b:  



(6 pts.) Repeat 4), but now your should be able to eventually (after a warm-up period 

during which it can make wrong predictions) start perfectly predicting both this 

pattern and its exact opposite (e.g., a: NT, NT, T, NT). Your predictor should have an 

input that tells it what the real outcome was. Hint: this input lets your predictor 

determine which of the two repeating patterns it is given. 

 

Solution: The easiest way is to use a shift register to record the history. The length of 

the shift register should be the same (or longer) as the period T of branch patterns. 

The predictor’s output is the same as the branch outcome T cycles before.  

 

Here is an example for sequence b. 

 

 

If you are using state diagram to solve problem 2(4) and 2(5), you must specify the 

input/output of the states, conditions that triggers the state to change, and the initial 

state. The examples of state diagrams are shown below (for (5), assuming the pattern 

changes only after the previous pattern finishes): 

 

 





(30 pts.) Barrel Shifter Design in Quartus II 

Design a 16-bit four-level Barrel Shifter. It has three control signals: Shift/Rotate, 

A/L (Arithmetic/Logic) and Direction, one 4-bit control input Shamt (Shift amount), 

sixteen-bit data inputs D[15:0], sixteen-bit data outputs Q[15:0]. Figure 2 shows its 

block diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Block diagram of Barrel Shifter 

 

 

When Shift/Rotate signal is low, “0” is shifted in Q. The number of bits shifted in is 

specified in Shamt and the direction of shift operation is specified in Direction (Left 

= 0, Right = 1). If A/L is low, the shifter performs Logic Shift operation; If A/L is 

high, the shifter performs Arithmetic shift. When Shift/Rotate is high, those bits 

shifted out are shifted in on the other side (instead of “0”).  

For example (A/L = 0, Shamt = 1 and Direction = Left): 

Shift/Rotate D[15:0] Q[15:0] 

0 8000 0000 

1 8000 0001 

 

 

You should turn in: 

1) A schematic of your design. If your top level design contains low level functional 

blocks (e.g. you generate symbols and use them in the top level), you should also 

provide the schematic of those functional blocks. You are only allowed to use either 

schematic or structural HDL in your design. 

2) A testbench (vector waveform file .vwf) for your design. You should provide 

enough test cases in your testbench in order to test the full functionality of your 

design. It must contain the following cases: 

Shift/Rotate 

Shamt 

D [15:0] 

Barrel Shifter 

Q [15:0] 

Direction 

A/L 



 

 

Shift/Rotate Direction A/L Shamnt 

0 0 0 0 

0 0 0 1 

0 0 0 2 

0 1 0 8 

1 0 0 1 

1 0 0 2 

1 1 0 8 

0 1 1 4 

0 1 1 4 

 

You may choose different values for D in order to prove the correctness of your 

design. 

3) A simulation result of your design. Functional simulation is required. You should 

include all inputs and outputs in the simulation file, and highlight D[15:0] and Q[15:0] 

in the waveform.  

 

 

 

4. (30 pts.) Datapath and Control Logic Design in Quartus II. 

Build a single-cycle 16-bit datapath with your ALU, Register File and the Barrel 

Shifter (shifter can be incorporated into the ALU). Then design a control logic that 

correctly handles the execution of arithmetic instructions in your datapath. The 

arithmetic instructions are ADD, SUB, AND OR, SLL, SRL (Shift Left/Right 

Logic,), SRA (Shift Left/Right Arithmetic) and RL (Rotate Left, Shift/Rotate = 1, 

Direction = 0). The machine code of each instruction is shown in the following table: 

 

Operation ADD SUB AND OR SLL SRL SRA RL 

Machine 

Code 

0000 0001 0010 0011 0100 0101 0110 0111 

 

Figure 3 shows the block diagram of the datapath and control logic.  

 

 

 

 



 
 

Figure 3: Block diagram of single-cycle datapath and control logic 

 

 

 

The ADD, SUB, AND, OR have a three address format. The assembly level syntax 

for these instructions is: 

Opcode Rd Rs Rt 

15    12  11     8  7     4  3     0 

These instructions will execute: Rd <== Rs (Opr) Rt. The two operands are Rs and Rt 

and the destination is register Rd.  

 

The SLL, SRL, SRA and RL have a two address and one immediate format. The 

assembly level syntax for these instructions is: 

Opcode Rt Rs imm 

15    12  11     8  7     4  3     0 

These instructions will execute: Rt <== Rs (Opr) imm. The two operands are Rs and 

imm, and the destination is register Rt. The 4-bit immediate value imm is used as the 

Shamnt input of the Barrel Shifter. 

 

How to test your design: 

Since we do not have memory operations yet, we use an external input bus to 

initialize your ALU. Use a multiplexor to select the source of WriteData, and use 

another input signal to control the multiplexor: “0” indicates initialization phase, in 

which the external input value is written into the registers; “1” indicates the testing 

phase, in which ALU result is written into the registers. 

Note: This external initialization scheme is used only for testing purpose. Later in 

your project you will need to remove them from your design. 



 

You should turn in: 

1) A schematic of your design. If your top level design contains low level functional 

blocks (e.g. you generate symbols and use them in the top level), you should also 

provide the schematic of those functional blocks. You are allowed to use schematic, 

structural HDL or behavioral HDL. Behavioral HDL is only allowed to use in control 

logic, not datapath elements. In the schematic, you may use one megafuntion block 

BUSMUX as your multiplexors for buses in your datapath. Other symbols must be 

primitives. 

2) A testbench (vector waveform file .vwf) for your design. You should provide 

enough test cases that cover functionality verification for all of the 8 operations. 

3) A simulation result of your design. Functional simulation is required. Include all 

the data values and control signals, and highlight each instruction code and its ALU 

result value.  

 

 

 


