
ECE/CS 552: Introduction to Computer Architecture

ASSIGNMENT #4

Due Date: At the beginning of lecture, November 17
th

, 2010

This homework is to be done individually. Total 6 Questions, 100 points

1. (15 pts.)The following set of instructions is to be renamed onto a set of physical

registers. The initial register map and free list are given. We assume that a physical

register is released and placed on the tail of the free list when the next definition

of the same architected register is committed.

1) (10 pts.) Show the rename mappings after each instruction has been dispatched by

filling out the table below, rewriting each instruction with renamed registers and

updating the rename mappings in the table appropriately. The first instruction has

been done for you. Assume that physical registers are allocated from the free list in

increasing numerical order. (This line is confusing)

Free list: (head) P9, P10, P11, P12, P13, P14, P15 (tail)

1: If assuming the free list is always in increasing numerical order, the renaming physical register is

different starting from here. But the architectural register being renamed should be the same.

2) (5 pts.) What is the free list of physical register after the registers of the last

instruction are renamed?

P10, P12. (P13 can be counted or not).

2. (13 pts.) Consider an instruction sequence:

A B C D E F G H.

Figure 1 shows the dependency information between them. The arrow represents the

dependency information between instructions. There are two computers P1 and P2.

The pipeline width of both of them is 2. That is, at most 2 instructions can be issued at

the same time. P1 is an in-order pipeline (no instruction can start execution before a

preceding instruction starts execution) and P2 is an out-of-order pipeline computer

(instructions can be executed in any order). Each instruction takes one cycle.

Original Instruction
Cycle timestamp
<disp,commit>

Renamed
Instruction

Rename mappings after instruction dispatches

R1 R2 R3 R4 R5 R6 R7 R8

Initial register mappings P1 P2 P3 P4 P5 P6 P7 P8

R5 <= R1 + R5 0, 5 P9 <= P1+P5 P9

R1 <= mem (R3 + R1) 1,6 P10 <=
mem(P3+P1)

P10

R1 <= R3 + 4 2,7 P11 <= P3 + 4 P11

R7 <= R1 + R2 3,8 P12 <= P11+P2 P12

R4 <= R4 – 1 4,9 P13 <= P4 - 1 P13

R4 <= R4 + R8 5,10 P14 <= P13+P8
1
 P14

R7 <= R4 – R7 6,11 P15 <=P14-P12 P15

R4 <= mem (R1 + R6) 7,12 P5 <=
mem(P11+P6)

 P5

R1 <= R5 – R4 8,13 P1 <= P9-P5 P1

A

E

B D

C F

G

H

Figure 1. Dependency information between instructions

1) (10 pts.) Show the schedule of issuing the instructions to execution in both

computers in table 1. The time in table 1 is represented by number of cycles that has

passed. Lane 1 and Lane 2 represent the two lanes in the datapath since its width is 2.

Table 1: Schedule of instruction issuing

Time 1 2 3 4 5 6 7 8 9 10

P1
Lane1 A B C E G H

Lane2 D F

P2
Lane1 A B C G H

Lane2 D E F

2) (3 pts.) What is the speedup of P2 compared with P1 on this instruction sequence?

SPEEDUP = 6/5 = 1.2

3. (12 pts.)

Given a 2 Kbytes two-way set associative cache with 16 byte lines and the following

code:

 for (int i = 0; i < 1000; i++) {

 A[i] = 40 * B[i];

 }

1) (10 pts.) Compute the overall miss rate (assume array entries require 4 bytes)

Each array contains 1000 elements. Each cache line contains 4 words. Since each

array element will be accessed only once, all misses shall be compulsory misses.

Since every 4 words will be loaded or written back simultaneously in a cache, the

miss rate is 25% since every 4
th

 access misses.

2) (2 pts.) What kind of cache locality is being exploited?

Spatial locality.

4. (10 pts.) Consider a cache with the following characteristics:

32-byte blocks

8-way set associative

256 sets

32-bit addresses

writeback policy

LRU replacement policy

1) (2 pts.) How many bytes of data storage are there?

256 × 8 × 32 = 2
18

 = 64 KB

2) (2 pts.) How many tag bits per set?

32 log2 256 log2 32 = 32 8 5 = 19 bits per set

3) (3 pts.) What operation is needed upon a read-miss (the program wants to read

from a memory location that is not in the cache)?

a. Find the LRU cache line to replace. If it is dirty, write the block to next level cache

/ memory.

b. Fetch 32-byte memory data from next level cache/memory of that memory address

and other data from the same block/line;

c. Update the tag bit of that cache line.

4) (3 pts.) What operation is needed upon a write-miss (the program wants to write to

a memory location that is not in the cache)?

a. Find the LRU cache line to replace. If it is dirty, write the block to next level cache

/ memory.

b. Fetch 32-byte memory data from next level cache/memory of that memory address

and other data from the same block/line;

c. Write to the memory location in that cache line. Mark the cache line as dirty.

Update the tag bit of that cache line.

5. (20 pts.) Consider a 3-way set associative cache. A, B, C, D are memory addresses

that have the same index bits but different tag bits from each other. In a program, the

reference sequence is as follows:

A, B, A, C, D, A, D, C, A, C

1) (5 pts.) What is the miss rate if the cache is using LRU replacement policy?

40%

2) (5 pts.) What is the miss rate if the cache is using MRU replacement policy?

50%

3) (10 pts.) Assuming the memory addresses being accessed are still A, B, C and D,

provide a case of memory reference sequence with length=10, in which MRU

performs better than LRU. Show the reference sequence and the miss rate of LRU and

MRU policy.

For example: A,B,C,D,A,B,C,D,A,B

6. (30 points) Simplescalar Simulation

This problem will introduce you to the Simplescalar simulator (documentation is

available from http://www.simplescalar.com/. Note that you will need a Unix account

at CAE for this problem (all students in this class are eligible for accounts at CAE).

The SimpleScalar 3.0 simulator is available at CAE in

"/home/vhosts/ece552.ece.wisc.edu/simplesim-3.0".

You will use a script called "RUNgcc" to run the gcc benchmark from the SPECint95

benchmark suite. Copy the files in "/home/vhosts/ece552.ece.wisc.edu/hw4" to

somewhere that you have write access.

1) (15 pts.) "sim-cache" is a cache simulator in SimpleScalar. Report the L2 unified

cache, L1 instruction cache, and L1 data cache miss rates, using the following

command (run from your hw4 directory):

./RUNgcc /home/vhosts/ece552.ece.wisc.edu/simplesim-3.0/sim-cache ./gcc.ss

-cache:il1 il1:128:64:1:l -cache:il2 dl2 -cache:dl1 dl1:256:32:1:l -cache:dl2

ul2:1024:64:2:l >& outfile

This will run the gcc benchmark and simulate a two-level cache hierarchy with an 8K

direct-mapped L1 instruction cache with 64 byte lines (128 sets, 64 byte lines, 1-way

set associative, 'l' for LRU replacement policy), an 8K direct mapped L1 data cache

with 32 byte lines (256 sets, 32 byte lines, 1-way set associative, 'l' for LRU

replacement policy), and a 128K 2-way set associative unified L2 cache with 64 byte

lines. The output of the simulation will be placed in "outfile".

Miss rate of the three caches should be close to the values given below:

IL1: 0.0118; DL1: 0.0521 UL2: 0.4852

2) (15 pts.) Using the RUNgcc script and the sim-cache tool, find the sizes of each of

the three caches that will reduce the miss rates of each of the three caches by 50%.

Report the configuration as well as the miss rate reported by sim-cache.

Any configuration that decreases the miss rate of each cache by no less than 50% are

acceptable.

