
ECE/CS 552: Introduction to Computer Architecture

ASSIGNMENT #5

Due Date: At the beginning of lecture, December 1
st
, 2010

This homework is to be done individually. Total 5 Questions, 100 points

1. (10 pts.) Consider a computer memory system with the following properties:

40-bit virtual byte address

16 KB pages

36-bit physical byte address

1) (5 pts.) What is the total size of a single-level forward page table for each process on

this processor, assuming that the valid, protection, dirty, and use bits take a total of 4 bits

and that all the virtual pages are in use? (Assume that disk addresses are not stored in the

page table).

2) (3 pts.) If the L1 cache is physically addressed and a TLB is used for fast

virtual-to-physical translation, show the required operations of a data memory read

access that hits in L1 cache.

3) (2 pts.) To maintain single-cycle access latency on L1 hits, sometimes L1 caches

are virtually addressed. What must be done for a virtually addressed L1 cache during

a context switch? Describe at least one way that guarantees the processes to access

virtual addresses of their own address spaces.

2. (10 pts.) A program repeatedly performs the following 3-step process:

It reads in a 4KB block of data from disk, does some processing on that data, and then

writes out the result as a 4KB block elsewhere in the disk. Each block is continuous

and randomly located on a single track on the disk (assume that different blocks are

on different tracks). The disk drive rotates at 10,000 RPM, has an average seek time

of 8ms, and has a transfer rate of 50MB/sec. The controller overhead is 2ms. No other

program is using the disk or processor, and there is no overlapping of disk operation

with processing. The processing step take 20 million clock cycles and the clock rate is

5GHz. What is the overall speed of the system in blocks processed per second?

3. (10 pts.) In the following table, do the multiplication in 2-bit Booth’s encoding. The

multiplicand and multiplier are in 7-bit 2’s complement representation. Show all the

partial products, and show the final result of the computation.

Multiplicand 0 0 1 1 0 1 1

Multiplier 1 1 0 1 0 0 1

Partial Products

Result

4. (25 pts.) Phased Memory Design

Timing constraints exist in real-world memories. Assume we have a simple

latch-based memory. WE is the write enable signal. When WE is 0, DATA_IN is

written into MEM [ADDR_IN]. When WE is 1, MEM [ADDR_IN] is read on

DATA_OUT.

Below is the timing waveform for the memory module. The clock signal clk has a

period of 1 ns.

Timing constraints for the memory module and the DFF are:

a. DFF propagation delay is 50 ps.

b. Setup times for ADDR_IN and DATA_IN are both 150 ps. That is, ADDR_IN

and DATA_IN must be stable for at least 150 ps before WE changes from 1 to 0.

c. Hold times for ADDR_IN and DATA_IN are both 180 ps. That is, ADDR_IN and

DATA_IN must be stable for at least 180 ps before WE changes from 0 to 1.

Violating setup and hold time constraints may result in wrong data being written

into wrong location.

1) (5 pts.) Explain why the following “straightforward” design does not work.

ADDR_IN

DATA_IN DATA_OUT

WE

DFF

DFF

DFF

clk

address

data

write_enable

2) (15 pts.) Assume we have another clock signal mem_clk that has a period of 250

ps, which is 4 times as fast as clk. By using mem_clk, we are able to divide the clk

into four phases, and generate different control signal in each phase. Draw

peripheral control logic in the following diagram to generate correct WE signal for

the memory when it is being written. You may use logic gates and flip-flops.

Indicate the initial value in the sequential component, if necessary.

ADDR_IN

DATA_IN DATA_OUT

WE

DFF

DFF

DFF

clk

address

data

write_enable

mem_clk

3) (5 pts.) Draw the new waveforms for the input signals when the memory is being

written in one clock cycle. Prove that your design did not violate the timing

constraints.

5. (45 pts.) Design in Quartus: SECDED Logic Design.

Design a single-error-correct-dual-error-detect (SECDED) error correction logic in

Quartus II. The protected data width is 8 bits. The width of ECC is 5 bits: 4 check bits

c1 – c4 and 1 overall parity bit p. The memory should be able to correct single-bit

errors at any position (including the ECC bits), and be able to detect double-bit errors

(but cannot correct them). The parity check matrix for the ECC (m=8, k=4) is:

Bit

index

0001

1

0010

2

0011

3

0100

4

0101

5

0110

6

0111

7

1000

8

1001

9

1010

10

1011

11

1100

12

1101

13

Bit

name

c1 c2 d1 c4 d2 d3 d4 c8 d5 d6 d7 d8 p

C1 X X X X X X

C2 X X X X X X

C4 X X X X X

C8 X X X X X

P X X X X X X X X X X X X

1) (15 pts.) Design the logic of ECC generator using only logic gates. The ECC

should take the 8-bit data and compute its 4-bit check bits and the parity bit.

2) (30 pts.) Design the SECDED error correction logic. It has two input: Data_In [7:0],

Data_Read [7:0], and two outputs: Data_Out [7:0] and Error. Data_In [7:0] represents

the actual data that writes to a memory location, and Data_Read [7:0] represents the

value that read from the same memory location, which may or may not have errors in

it. The number of error bits is the number of different bits between Data_In [7:0] and

Data_Read [7:0].

SECDED Error Correction Logic

Data_In[7:0] Data_Read[7:0]

Data_out[7:0] Error

The Data_Out[7:0] output should return the correct data when there is no error, and

when there is a correctable single-bit error (so your design must correct the corrupted

bit).

The Error output should be zero when there is no error, and should be one only when

an uncorrectable double-bit error between is detected.

Add functional blocks and proper connections to complete this diagram. Besides logic

gates, you are allowed to use the following functional blocks:

a. ECC generator that you designed in (1).

b. Bit-wise XOR module for two multi-bit values.

c. Decoder with any input width. You are most likely to use 4-to-16 decoder.

You should turn in:

1) Schematics of the ECC generator and the SECDED logic.

2) Simulation result of the following input sequence (you can add more).

Error type Data_In[7:0] Data_Read[7:0]

No error 00000000 00000000

11111111 11111111

10101010 10101010

1-bit error 00000000 00000001

11111111 01111111

10101010 10111010

2-bit error 00000000 10000001

11111111 11110011

10101010 10110010

