
ECE/CS 552: Introduction to Computer Architecture 

ASSIGNMENT #5 

Due Date: At the beginning of lecture, December 1
st
, 2010 

This homework is to be done individually.           Total 5 Questions, 100 points 

 

1. (10 pts.) Consider a computer memory system with the following properties:  

40-bit virtual byte address  

16 KB pages  

36-bit physical byte address  

1) (5 pts.) What is the total size of a single-level forward page table for each process on 

this processor, assuming that the valid, protection, dirty, and use bits take a total of 4 bits 

and that all the virtual pages are in use? (Assume that disk addresses are not stored in the 

page table).   

2) (3 pts.) If the L1 cache is physically addressed and a TLB is used for fast 

virtual-to-physical translation, show the required operations of a data memory read 

access that hits in L1 cache. 

3) (2 pts.) To maintain single-cycle access latency on L1 hits, sometimes L1 caches 

are virtually addressed. What must be done for a virtually addressed L1 cache during 

a context switch? Describe at least one way that guarantees the processes to access 

virtual addresses of their own address spaces. 

 

 

 

 

2. (10 pts.) A program repeatedly performs the following 3-step process: 

It reads in a 4KB block of data from disk, does some processing on that data, and then 

writes out the result as a 4KB block elsewhere in the disk. Each block is continuous 

and randomly located on a single track on the disk (assume that different blocks are 

on different tracks). The disk drive rotates at 10,000 RPM, has an average seek time 

of 8ms, and has a transfer rate of 50MB/sec. The controller overhead is 2ms. No other 

program is using the disk or processor, and there is no overlapping of disk operation 

with processing. The processing step take 20 million clock cycles and the clock rate is 

5GHz. What is the overall speed of the system in blocks processed per second? 

 

 

 

3. (10 pts.) In the following table, do the multiplication in 2-bit Booth’s encoding. The 

multiplicand and multiplier are in 7-bit 2’s complement representation. Show all the 

partial products, and show the final result of the computation. 



 

 

Multiplicand  0  0  1  1  0  1  1 

Multiplier 1  1  0  1  0  0  1 

Partial Products  

Result  

 

 

4. (25 pts.) Phased Memory Design 

Timing constraints exist in real-world memories. Assume we have a simple 

latch-based memory. WE is the write enable signal. When WE is 0, DATA_IN is 

written into MEM [ADDR_IN]. When WE is 1, MEM [ADDR_IN] is read on 

DATA_OUT.  

Below is the timing waveform for the memory module. The clock signal clk has a 

period of 1 ns.  

 

 

 

Timing constraints for the memory module and the DFF are: 

a. DFF propagation delay is 50 ps. 

b. Setup times for ADDR_IN and DATA_IN are both 150 ps. That is, ADDR_IN 

and DATA_IN must be stable for at least 150 ps before WE changes from 1 to 0. 



c. Hold times for ADDR_IN and DATA_IN are both 180 ps. That is, ADDR_IN and 

DATA_IN must be stable for at least 180 ps before WE changes from 0 to 1. 

Violating setup and hold time constraints may result in wrong data being written 

into wrong location. 

 

1) (5 pts.) Explain why the following “straightforward” design does not work. 
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2) (15 pts.) Assume we have another clock signal mem_clk that has a period of 250 

ps, which is 4 times as fast as clk. By using mem_clk, we are able to divide the clk 

into four phases, and generate different control signal in each phase. Draw 

peripheral control logic in the following diagram to generate correct WE signal for 

the memory when it is being written. You may use logic gates and flip-flops. 

Indicate the initial value in the sequential component, if necessary. 
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3) (5 pts.) Draw the new waveforms for the input signals when the memory is being 

written in one clock cycle. Prove that your design did not violate the timing 

constraints.  

 

 

 

 

5. (45 pts.) Design in Quartus: SECDED Logic Design.  

Design a single-error-correct-dual-error-detect (SECDED) error correction logic in 

Quartus II. The protected data width is 8 bits. The width of ECC is 5 bits: 4 check bits 

c1 – c4 and 1 overall parity bit p. The memory should be able to correct single-bit 

errors at any position (including the ECC bits), and be able to detect double-bit errors 

(but cannot correct them). The parity check matrix for the ECC (m=8, k=4) is: 

 

Bit 

index 

0001 

1 

0010 

2 

0011 

3 

0100 

4 

0101 

5 

0110 

6 

0111 

7 

1000 

8 

1001 

9 

1010 

10 

1011 

11 

1100 

12 

1101 

13 

Bit 

name 

c1 c2 d1 c4 d2 d3 d4 c8 d5 d6 d7 d8 p 

C1 X  X  X  X  X  X   

C2  X X   X X   X X   

C4    X X X X     X  

C8        X X X X X  

P X X X X X X X X X X X X  



 

1) (15 pts.) Design the logic of ECC generator using only logic gates. The ECC 

should take the 8-bit data and compute its 4-bit check bits and the parity bit. 

2) (30 pts.) Design the SECDED error correction logic. It has two input: Data_In [7:0], 

Data_Read [7:0], and two outputs: Data_Out [7:0] and Error. Data_In [7:0] represents 

the actual data that writes to a memory location, and Data_Read [7:0] represents the 

value that read from the same memory location, which may or may not have errors in 

it. The number of error bits is the number of different bits between Data_In [7:0] and 

Data_Read [7:0]. 

SECDED Error Correction Logic

Data_In[7:0] Data_Read[7:0]

Data_out[7:0] Error

 

 

The Data_Out[7:0] output should return the correct data when there is no error, and 

when there is a correctable single-bit error (so your design must correct the corrupted 

bit). 

The Error output should be zero when there is no error, and should be one only when 

an uncorrectable double-bit error between is detected. 

Add functional blocks and proper connections to complete this diagram. Besides logic 

gates, you are allowed to use the following functional blocks: 

a. ECC generator that you designed in (1). 

b. Bit-wise XOR module for two multi-bit values. 

c. Decoder with any input width. You are most likely to use 4-to-16 decoder. 

 

You should turn in: 



1) Schematics of the ECC generator and the SECDED logic. 

2) Simulation result of the following input sequence (you can add more). 

Error type Data_In[7:0] Data_Read[7:0] 

No error 00000000 00000000 

11111111 11111111 

10101010 10101010 

1-bit error 00000000 00000001 

11111111 01111111 

10101010 10111010 

2-bit error 00000000 10000001 

11111111 11110011 

10101010 10110010 

 

 


