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ECE/CS 552 : Introduction to Computer Architecture 
FINAL EXAM 
May 12th, 2002 

 
 
 
 
NAME:________SOLUTION______________________________________ 
 
This exam is to be done individually.                                  Total 6 Questions, 100 points 

Show all your work to receive partial credit for incorrect solutions 

 
1. (15 Points) Integer Multiplication and Division 

a) (2 points) What is the simple Booth encoding of the two’s complement 
number 100111012 ? Fill in the table below to encode the number with 
digits (1,0,-1) in the same manner that the simple Booth multiplier would. 

b) (3 Points) Fill in the table to encode the number using Modified Booth’s 
algorithm. I.e encode with the digits (-2,-1,0,+1,+2) 

 

 

 

 

 
 
 
 
Show your work here: 
 

1 0 0 1 1 1 0 1 2’s 
complement 

-1 0 +1 0 0 -1 +1 -1 1-bit 
Booth’s 

-2 +2 -1 +1 2-bit 
Booth’s 
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c) (10 points) Using 4-bit unsigned division, 15 divided by 3 gives a quotient 
of 5 and a remainder of 0.  i.e. 1111 / 0011 = 0101 For the  restoring and 
non restoring division algorithms, how many separate additions and 
subtractions are required?  

 
Restoring (5 Points) 

 
Number of additions: 2 
 
Number of subtractions: 4 
 
Show your work here: 
 
 
 
 
 
 
 
 
 
 
 
 
 
Non-Restoring (5 Points) 
 
Number of additions: 2 
 
Number of subtractions: 2 
 
Show your work here: 
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2. (20 Points) Floating Point Representation and Arithmetic 
a) (5 points) Consider FPS-10,  a 10-bit low-cost floating-point 

representation  that has a sign bit, a 4-bit biased or excess exponent with a 
bias of 7, and 5 significand bits. Values are normalized to have an implicit 
leading ‘1’ to the left of the floating point (just as in IEEE 754). With this 
standard, represent (-0.2)10 . 

 
              Sign         Exponent                            Significand 

1 0100 10011 

 
Show your work here: 
S = 1 
0.2  = 0.00110011001100… normalized is 1.10011 so exp is -3, with bias is 4 or 0100 
 
 
 
 
 

b) (5 Points) Fill in the following table to specify the range of values that can 
be represented with FPS-10 when only normalized numbers are allowed, 
and also when denormalized numbers are  allowed.  Specify min/max 
values in both binary and decimal scientific notation. 

 
Minimum of Range Maximum of Range Case 

Binary Decimal Binary Decimal 

    Normalized 
Numbers Only 

    Denormalized 
numbers also 

 
Show your work here: 
Smallest normalized: +/- 1x2^-6 Largest: +/- 1x2^7 (assume e=1111 is 
for inf/NaN) 
Denorm smallest: +/- 1x2^-11 
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(10 points) Given A and B below, compute R = A * B using the FPS-10 
FP standard.  Show the sign bit and exponent of the result, and fill in the 
table below assuming a 1 bit per cycle multicycle multiplier for computing 
the significand (you may use a Booth multiplier if you wish, but show 
your work). 

 
A=1.110102 x 24  (FP binary representation: 0101111010) 
B=1.001012 x 22  (FP binary representation: 0100100101) 
 
Sign bit of product: 0 (positive) 
 
Exponent of product: 6 
 
Significand computation: 
 Multiplicand: 111010 
 Multiplier: 100101 
 
Step Explanation Product Register 
1 +111010 0111010 
2 +0 00111010 
3 001110+111010 100100010 
4 +0 0100100010 
5 +0 00100100010 
6 001001+111010 100001100010 
7   
8   
9   
10   
 
Record the properly normalized and rounded result in binary format below: 
  
              Sign         Exponent                            Significand 

0 7+7=14 or 1110 00010 

 
Show any additional work here: 
Product is 10.0001100010 x 2^6, normalize to 1.00001100010x2^7 
Truncated would be 1.00001 
Rounded would be 1.00010 since r=1, g=0, s=1 
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3. (20 Points) Consider a processor with 32-bit virtual addresses, 4KB pages and 
36-bit physical addresses. Assume memory is byte-addressable (i.e. the 32-bit VA 
specifies a byte in memory). 

 
 L1 instruction cache: 64 Kbytes, 128 byte blocks, 4-way set associative, indexed 

and tagged with virtual address. 
 L1 data cache: 32 Kbytes, 64 byte blocks, 2-way set associative, indexed and 

tagged with physical address, write-back. 
 4-way set associative TLB with 128 entries in all.  Assume the TLB keeps a dirty 

bit, a reference bit, and 3 permission bits (read, write, execute) for each entry. 
 

a) (10 points) Specify the number of offset, index, and tag bits for each of 
these structures in the table below.  Also, compute the total size in number 
of bit cells for each of the tag and data arrays. 

 
Structure Offset bits Index bits Tag bits Size of 

tag array 
Size of 
data array 

I-cache 7 7 18 2^9x19 2^16x8 

D-cache 6 8 22 2^9x24 2^15*8 

TLB 12 5 15 2^7x21 2^7x24 

 
Show your work here: 
 
 
 
 
 
 



Mikko Lipasti 
Spring 2002 

b) (5 Points) Explain why accesses to the data cache would take longer than 
accesses to the instruction cache.  Suggest a lower-latency data cache 
design with the same capacity and describe how the organization of the 
cache would have to change to achieve the lower latency. 

 
Have to access TLB in series with Dcache. 
 
Could use 32K 8-way set-associative design.  Here offset+index bits can all come 
from the page offset, so they need not be translated.  This way, the cache lookup and 
TLB lookup can proceed in parallel. 
 
 
 
 
 
 
 
 
 
 
 
 
 

c) (5 points) Assume the architecture requires writes that modify the 
instruction text (i.e. self-modifying code) to be reflected immediately if 
the modified instructions are fetched and executed.  Explain why it may be 
difficult to support this requirement with this instruction cache 
organization.  

 
The data cache is physically addressed, while the instruction cache is virtually 
addressed.  One way to keep the I$ coherent is to snoop all writes against it, but 
these have to be reverse-translated from physical back to virtual before the I$ snoop 
can occur. 
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4. (5 Points) Bypass Network Design 
Given the following ID, EX, MEM, and WB pipeline configuration, draw all 
necessary Mux0 and Mux1 bypass paths to resolve RAW data hazards.  Assume that 
load instructions are always separated by at least one independent instruction 
(possibly a NOP) from any instruction that reads the loaded register (hence you never 
stall due to a RAW hazard). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Src0 Src1 

Mux1 Mux0 

Data Cache 

ALUout StData 

MEMALUout MemData 

ID

EX

EX

MEM

MEM

WB

ALU 

OP ReadReg0 ReadReg1 WrReg 

OP ReadReg0 ReadReg1 WrReg 

OP ReadReg0 ReadReg1 WrReg
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5. (20 points) Given the forwarding paths in problem 4, draw a detailed design for 
Mux0 and Mux1 that clearly identifies which bypass paths are selected under 
which control conditions.  Identify each input to each mux by the name of the 
pipeline latch that it is bypassing from.  Specify precisely the Boolean equations 
that are used to control Mux0 and Mux1.  Possible inputs to the Boolean 
equations are: 

 
 ID.OP, EX.OP, MEM.OP = {‘load’, ‘store’, ‘alu’, ‘other’} 
 ID.ReadReg0, ID.ReadReg1 = [0..31,32] where 32 means a register is not read by 

this instruction 
 EX.ReadReg0, etc. as in ID stage 
 MEM.ReadReg0, etc. as in ID stage 
 ID.WriteReg, EX.WriteReg, MEM.WriteReg = [0..31,33] where 33 means a 

register is not written by this instruction 
 
Draw Mux0 and Mux1 with labeled inputs; you do not need to show the controls 
using gates. Simply write out the control equations using symbolic OP comparisons, 
etc. (e.g. Ctrl1 = (ID.op == ‘load’) & (ID.WriteReg==MEM.ReadReg0)). 
11: source is MemData: Memop==’load’& (ID. ReadReg0==Mem.WrReg) 

01: source is MemALU: source is MemALU: Mem.op==’alu’ & “” 

10: source is ALUout: Ex.op==’alu’ & (ID.readReg0 == EX.WrReg) 

 

Mux1 is identical except use readReg1 

 

Logic design is not shown here. 
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(20 points) Match the following terms or concepts to the best definition. 
 

Term or Concept Best 
Match 

ID Definition 

VLIW t a Dynamic multiple arbitration 
SIMD m b Caused by inadequate space in a cache 
CC-NUMA j c Resolves WAR and WAW hazards in an out-

of-order processor 
Cold misses k d Broadcasts all cache misses on a bus shared 

with all other processors 
SECDED ECC w e Resolved when a dirty copy of a cache block 

is found in the cache of another processor 
Directory protocol s f Size of this structure is proportion to amount 

of physical memory instead of size of virtual 
address space 

Address translation l g Requires handshaking to communicate 
Reorder or commit 
buffer 

r h Used by the operating system to store 
address translations in a sparse tree structure 

Branch predictor p i Only stalls execution of data-dependent 
instructions vs. all instructions 

Seek and rotational q j Machine organization where memory latency 
varies with the location of memory 

Capacity misses b k Caused by a program’s first reference to a 
memory location 

DMA u l Enables controlled sharing and protection of 
physical memory pages 

Hashed page table f m Applies the same operation to many data 
operands at the same time 

Snoopy coherence d n Special-purpose cache for virtual address 
translations 

Out-of-order 
execution core 

i o Occur when multiple addresses map to the 
same set 

Asynchronous bus g p Resolves control dependences speculatively 
Conflict misses o q Delays caused by mechanical components in 

a storage device 
Amdahl’s Law v r Enables precise exceptions in an out-of-order 

processor 
Register renaming c s Can maintain coherent caches in a machine 

with hundreds of CPUs 
Coherence misses e t Executes parallel instructions in lock step 
  u Used by input/output device to transfer data 
  v Illustrates the performance bottleneck caused 

by serial phases of computation 
  w Makes it possible to build reliable memory 

even when individual storage cells can fail. 
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