
Mikko Lipasti
Spring 2002

ECE/CS 552 : Introduction to Computer Architecture
FINAL EXAM
May 12th, 2002

NAME:________SOLUTION______________________________________

This exam is to be done individually. Total 6 Questions, 100 points

Show all your work to receive partial credit for incorrect solutions

1. (15 Points) Integer Multiplication and Division

a) (2 points) What is the simple Booth encoding of the two’s complement
number 100111012 ? Fill in the table below to encode the number with
digits (1,0,-1) in the same manner that the simple Booth multiplier would.

b) (3 Points) Fill in the table to encode the number using Modified Booth’s
algorithm. I.e encode with the digits (-2,-1,0,+1,+2)

Show your work here:

1 0 0 1 1 1 0 1 2’s
complement

-1 0 +1 0 0 -1 +1 -1 1-bit
Booth’s

-2 +2 -1 +1 2-bit
Booth’s

Mikko Lipasti
Spring 2002

c) (10 points) Using 4-bit unsigned division, 15 divided by 3 gives a quotient
of 5 and a remainder of 0. i.e. 1111 / 0011 = 0101 For the restoring and
non restoring division algorithms, how many separate additions and
subtractions are required?

Restoring (5 Points)

Number of additions: 2

Number of subtractions: 4

Show your work here:

Non-Restoring (5 Points)

Number of additions: 2

Number of subtractions: 2

Show your work here:

Mikko Lipasti
Spring 2002

2. (20 Points) Floating Point Representation and Arithmetic
a) (5 points) Consider FPS-10, a 10-bit low-cost floating-point

representation that has a sign bit, a 4-bit biased or excess exponent with a
bias of 7, and 5 significand bits. Values are normalized to have an implicit
leading ‘1’ to the left of the floating point (just as in IEEE 754). With this
standard, represent (-0.2)10 .

 Sign Exponent Significand

1 0100 10011

Show your work here:
S = 1
0.2 = 0.00110011001100… normalized is 1.10011 so exp is -3, with bias is 4 or 0100

b) (5 Points) Fill in the following table to specify the range of values that can
be represented with FPS-10 when only normalized numbers are allowed,
and also when denormalized numbers are allowed. Specify min/max
values in both binary and decimal scientific notation.

Minimum of Range Maximum of Range Case

Binary Decimal Binary Decimal

 Normalized
Numbers Only

 Denormalized
numbers also

Show your work here:
Smallest normalized: +/- 1x2^-6 Largest: +/- 1x2^7 (assume e=1111 is
for inf/NaN)
Denorm smallest: +/- 1x2^-11

Mikko Lipasti
Spring 2002

(10 points) Given A and B below, compute R = A * B using the FPS-10
FP standard. Show the sign bit and exponent of the result, and fill in the
table below assuming a 1 bit per cycle multicycle multiplier for computing
the significand (you may use a Booth multiplier if you wish, but show
your work).

A=1.110102 x 24 (FP binary representation: 0101111010)
B=1.001012 x 22 (FP binary representation: 0100100101)

Sign bit of product: 0 (positive)

Exponent of product: 6

Significand computation:
 Multiplicand: 111010
 Multiplier: 100101

Step Explanation Product Register
1 +111010 0111010
2 +0 00111010
3 001110+111010 100100010
4 +0 0100100010
5 +0 00100100010
6 001001+111010 100001100010
7
8
9
10

Record the properly normalized and rounded result in binary format below:

 Sign Exponent Significand

0 7+7=14 or 1110 00010

Show any additional work here:
Product is 10.0001100010 x 2^6, normalize to 1.00001100010x2^7
Truncated would be 1.00001
Rounded would be 1.00010 since r=1, g=0, s=1

Mikko Lipasti
Spring 2002

3. (20 Points) Consider a processor with 32-bit virtual addresses, 4KB pages and
36-bit physical addresses. Assume memory is byte-addressable (i.e. the 32-bit VA
specifies a byte in memory).

 L1 instruction cache: 64 Kbytes, 128 byte blocks, 4-way set associative, indexed

and tagged with virtual address.
 L1 data cache: 32 Kbytes, 64 byte blocks, 2-way set associative, indexed and

tagged with physical address, write-back.
 4-way set associative TLB with 128 entries in all. Assume the TLB keeps a dirty

bit, a reference bit, and 3 permission bits (read, write, execute) for each entry.

a) (10 points) Specify the number of offset, index, and tag bits for each of
these structures in the table below. Also, compute the total size in number
of bit cells for each of the tag and data arrays.

Structure Offset bits Index bits Tag bits Size of

tag array
Size of
data array

I-cache 7 7 18 2^9x19 2^16x8

D-cache 6 8 22 2^9x24 2^15*8

TLB 12 5 15 2^7x21 2^7x24

Show your work here:

Mikko Lipasti
Spring 2002

b) (5 Points) Explain why accesses to the data cache would take longer than
accesses to the instruction cache. Suggest a lower-latency data cache
design with the same capacity and describe how the organization of the
cache would have to change to achieve the lower latency.

Have to access TLB in series with Dcache.

Could use 32K 8-way set-associative design. Here offset+index bits can all come
from the page offset, so they need not be translated. This way, the cache lookup and
TLB lookup can proceed in parallel.

c) (5 points) Assume the architecture requires writes that modify the
instruction text (i.e. self-modifying code) to be reflected immediately if
the modified instructions are fetched and executed. Explain why it may be
difficult to support this requirement with this instruction cache
organization.

The data cache is physically addressed, while the instruction cache is virtually
addressed. One way to keep the I$ coherent is to snoop all writes against it, but
these have to be reverse-translated from physical back to virtual before the I$ snoop
can occur.

Mikko Lipasti
Spring 2002

4. (5 Points) Bypass Network Design
Given the following ID, EX, MEM, and WB pipeline configuration, draw all
necessary Mux0 and Mux1 bypass paths to resolve RAW data hazards. Assume that
load instructions are always separated by at least one independent instruction
(possibly a NOP) from any instruction that reads the loaded register (hence you never
stall due to a RAW hazard).

Src0 Src1

Mux1 Mux0

Data Cache

ALUout StData

MEMALUout MemData

ID

EX

EX

MEM

MEM

WB

ALU

OP ReadReg0 ReadReg1 WrReg

OP ReadReg0 ReadReg1 WrReg

OP ReadReg0 ReadReg1 WrReg

Mikko Lipasti
Spring 2002

5. (20 points) Given the forwarding paths in problem 4, draw a detailed design for
Mux0 and Mux1 that clearly identifies which bypass paths are selected under
which control conditions. Identify each input to each mux by the name of the
pipeline latch that it is bypassing from. Specify precisely the Boolean equations
that are used to control Mux0 and Mux1. Possible inputs to the Boolean
equations are:

 ID.OP, EX.OP, MEM.OP = {‘load’, ‘store’, ‘alu’, ‘other’}
 ID.ReadReg0, ID.ReadReg1 = [0..31,32] where 32 means a register is not read by

this instruction
 EX.ReadReg0, etc. as in ID stage
 MEM.ReadReg0, etc. as in ID stage
 ID.WriteReg, EX.WriteReg, MEM.WriteReg = [0..31,33] where 33 means a

register is not written by this instruction

Draw Mux0 and Mux1 with labeled inputs; you do not need to show the controls
using gates. Simply write out the control equations using symbolic OP comparisons,
etc. (e.g. Ctrl1 = (ID.op == ‘load’) & (ID.WriteReg==MEM.ReadReg0)).
11: source is MemData: Memop==’load’& (ID. ReadReg0==Mem.WrReg)

01: source is MemALU: source is MemALU: Mem.op==’alu’ & “”

10: source is ALUout: Ex.op==’alu’ & (ID.readReg0 == EX.WrReg)

Mux1 is identical except use readReg1

Logic design is not shown here.

Mikko Lipasti
Spring 2002

(20 points) Match the following terms or concepts to the best definition.

Term or Concept Best
Match

ID Definition

VLIW t a Dynamic multiple arbitration
SIMD m b Caused by inadequate space in a cache
CC-NUMA j c Resolves WAR and WAW hazards in an out-

of-order processor
Cold misses k d Broadcasts all cache misses on a bus shared

with all other processors
SECDED ECC w e Resolved when a dirty copy of a cache block

is found in the cache of another processor
Directory protocol s f Size of this structure is proportion to amount

of physical memory instead of size of virtual
address space

Address translation l g Requires handshaking to communicate
Reorder or commit
buffer

r h Used by the operating system to store
address translations in a sparse tree structure

Branch predictor p i Only stalls execution of data-dependent
instructions vs. all instructions

Seek and rotational q j Machine organization where memory latency
varies with the location of memory

Capacity misses b k Caused by a program’s first reference to a
memory location

DMA u l Enables controlled sharing and protection of
physical memory pages

Hashed page table f m Applies the same operation to many data
operands at the same time

Snoopy coherence d n Special-purpose cache for virtual address
translations

Out-of-order
execution core

i o Occur when multiple addresses map to the
same set

Asynchronous bus g p Resolves control dependences speculatively
Conflict misses o q Delays caused by mechanical components in

a storage device
Amdahl’s Law v r Enables precise exceptions in an out-of-order

processor
Register renaming c s Can maintain coherent caches in a machine

with hundreds of CPUs
Coherence misses e t Executes parallel instructions in lock step
 u Used by input/output device to transfer data
 v Illustrates the performance bottleneck caused

by serial phases of computation
 w Makes it possible to build reliable memory

even when individual storage cells can fail.

Mikko Lipasti
Spring 2002

