
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Review for ECE/CS 552: Review for FinalFinal
Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Midterm 2 DetailsMidterm 2 Details

 Final exam slot: Mon., 12/20, 12:25pm, EH2317
 No calculators, electronic devices
 Bring cheat sheet

8 5x11 sheet of paper

2

– 8.5x11 sheet of paper
 Similar to midterm

– Some design problems
– Some analysis problems
– Some multiple-choice problems

 Check learn@uw for recorded grades

Midterm ScopeMidterm Scope
 Chapter 3.3-3.5:

– Multiplication, Division, Floating Point
 Chapter 4.10-4.11: Enhancing performance

– Superscalar lecture notes
MIPS R10K reading on course web page

3

– MIPS R10K reading on course web page
 Chapter 5: Memory Hierarchy

– Caches, virtual memory
– SECDED (handout)

 Chapter 6: I/O
 Chapter 5.7-5.9, 7: Multiprocessors

– Lecture notes on power and multicore
– Lecture notes on multithreading

Integer Multiply and DivideInteger Multiply and Divide

 Integer multiply
– Combinational

– Multicycle

4

y

– Booth’s algorithm

 Integer divide
– Multicycle restoring

– Non-restoring

MultiplicationMultiplication

 Flashback to 3rd grade
– Multiplier
– Multiplicand
– Partial products

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

5

– Partial products
– Final sum

 Base 10: 8 x 9 = 72
– PP: 8 + 0 + 0 + 64 = 72

 How wide is the result?
– log(n x m) = log(n) + log(m)
– 32b x 32b = 64b result

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

MultiplierMultiplier

32 bits

Multiplicand

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

6

Control
testWrite

64 bits

Shift right
Product

32-bit ALU

ECE/CS 552: Introduction To Computer Architecture 2

Multiplier Multiplier
1. Test

Product0

1a. Add multiplicand to the left half of
the product and place the resu lt in

the left half of the Product register

Start

Product0 = 0Product0 = 1

7D one

2. Sh ift the Product reg ister right 1 bit

32nd repetition?
No: < 32 repetitions

Yes: 32 repetitions

1 0 0 0

x 1 0 0 1

1 0 0 0

0 0 0 0

0 0 0 0

1 0 0 0

1 0 0 1 0 0 0

Booth’s AlgorithmBooth’s Algorithm
Current
bit

Bit to
right

Explanation Example Operation

1 0 Begins run of ‘1’ 00001111000 Subtract

8

1 1 Middle of run of ‘1’ 00001111000 Nothing

0 1 End of a run of ‘1’ 00001111000 Add

0 0 Middle of a run of ‘0’ 00001111000 Nothing

Booth’s EncodingBooth’s Encoding

 Really just a new way to encode numbers
– Normally positionally weighted as 2n

– With Booth, each position has a sign bit

9

, p g

– Can be extended to multiple bits

0 1 1 0 Binary
+1 0 -1 0 1-bit Booth
+2 -2 2-bit Booth

22--bits/cycle Booth Multiplierbits/cycle Booth Multiplier

 For every pair of multiplier bits
– If Booth’s encoding is ‘-2’

 Shift multiplicand left by 1, then subtract

– If Booth’s encoding is ‘-1’

10

If Booth s encoding is 1
 Subtract

– If Booth’s encoding is ‘0’
 Do nothing

– If Booth’s encoding is ‘1’
 Add

– If Booth’s encoding is ‘2’
 Shift multiplicand left by 1, then add

2 bits/cycle Booth’s2 bits/cycle Booth’s

Current Previous Operation Explanation

00 0 +0;shift 2 [00] => +0, [00] => +0; 2x(+0)+(+0)=+0

00 1 +M; shift 2 [00] => +0, [01] => +M; 2x(+0)+(+M)=+M

1 bit Booth

00 +0

01 +M;

10 -M;

11 +0

11

01 0 +M; shift 2 [01] => +M, [10] => -M; 2x(+M)+(-M)=+M

01 1 +2M; shift 2 [01] => +M, [11] => +0; 2x(+M)+(+0)=+2M

10 0 -2M; shift 2 [10] => -M, [00] => +0; 2x(-M)+(+0)=-2M

10 1 -M; shift 2 [10] => -M, [01] => +M; 2x(-M)+(+M)=-M

11 0 -M; shift 2 [11] => +0, [10] => -M; 2x(+0)+(-M)=-M

11 1 +0; shift 2 [11] => +0, [11] => +0; 2x(+0)+(+0)=+0

Integer DivisionInteger Division
 Again, back to 3rd grade

1 0 0 1 Quotient

Divisor 1 0 0 0 1 0 0 1 0 1 0 Dividend

12

- 1 0 0 0

1 0

1 0 1

1 0 1 0

- 1 0 0 0

1 0 Remainder

ECE/CS 552: Introduction To Computer Architecture 3

Improved Improved
DividerDivider

T e s t R e m a in d e r

S ta r t

R e m a in d e r < 0

2 . S u b t ra c t th e D iv is o r re g is te r f ro m th e
le f t h a lf o f th e R e m a in d e r re g is te r a n d
p la c e th e re s u lt in th e le ft h a l f o f th e

R e m a in d e r re g is te r

R e m a in d e r 0

1 . S h if t t h e R e m a in d e r re g is t e r le f t 1 b i t

–>

13D o n e . S h ift le ft h a l f o f R e m a in d e r r ig h t 1 b it

3 a . S h ift th e R e m a in d e r re g is te r to th e
 le ft , s e tt in g t h e n e w r ig h tm o s t b it to 1

3 2 n d re p e t it io n ?
N o : < 3 2 re p e t i t io n s

Y e s : 3 2 r e p e t i t io n s

3 b . R e s t o re th e o r ig in a l v a lu e b y a d d in g
th e D iv is o r re g is te r to th e le f t h a lf o f th e

R e m a in d e r re g is te r a n d p la ce th e s u m
 in th e le f t h a lf o f th e R e m a in d e r re g is te r .

A ls o s h if t th e R e m a in d e r re g is te r to th e
le ft , s e t tin g t h e n e w r ig h tm o s t b i t to 0

Improved Divider Improved Divider

32 bits

Divisor

14

Write

64 bits

Shift left
Shift right

Remainder

32-bit ALU

Control
test

NonNon--restoring Divisionrestoring Division

 Consider remainder to be restored:
Ri = Ri-1 – d < 0

– Since Ri is negative, we must restore it, right?

15

– Well, maybe not. Consider next step i+1:

Ri+1 = 2 x (Ri) – d = 2 x (Ri – d) + d

 Hence, we can compute Ri+1 by not restoring Ri,
and adding d instead of subtracting d
– Same value for Ri+1 results

 Throughput of 1 bit per cycle

NR Division ExampleNR Division Example
Iteration Step Divisor Remainder

0
Initial values 0010 0000 0111
Shift rem left 1 0010 0000 1110

1
2: Rem = Rem - Div 0010 1110 1110
3b: Rem < 0 (add next), sll 0 0010 1101 1100

16

(),

2
2: Rem = Rem + Div 0010 1111 1100
3b: Rem < 0 (add next), sll 0 0010 1111 1000

3
2: Rem = Rem + Div 0010 0001 1000
3a: Rem > 0 (sub next), sll 1 0010 0011 0001

4
Rem = Rem – Div 0010 0001 0001
Rem > 0 (sub next), sll 1 0010 0010 0011
Shift Rem right by 1 0010 0001 0011

Floating Point SummaryFloating Point Summary

 Floating point representation
– Normalization

– Overflow, underflow

17

,

– Rounding

 Floating point add
 Floating point multiply

Floating PointFloating Point

 Still use a fixed number of bits
– Sign bit S, exponent E, significand F

– Value: (-1)S x F x 2E

18

 IEEE 754 standard

Size Exponent Significand Range

Single precision 32b 8b 23b 2x10+/-38

Double precision 64b 11b 52b 2x10+/-308

S E F

ECE/CS 552: Introduction To Computer Architecture 4

Floating Point NormalizationFloating Point Normalization

 S,E,F representation allows more than one
representation for a particular value, e.g.
1.0 x 105 = 0.1 x 106 = 10.0 x 104

– This makes comparison operations difficult

19

This makes comparison operations difficult
– Prefer to have a single representation

 Hence, normalize by convention:
– Only one digit to the left of the floating point
– In binary, that digit must be a 1

 Since leading ‘1’ is implicit, no need to store it
 Hence, obtain one extra bit of precision for free

FP Overflow/UnderflowFP Overflow/Underflow

 FP Overflow
– Analogous to integer overflow
– Result is too big to represent

20

– Means exponent is too big
 FP Underflow

– Result is too small to represent
– Means exponent is too small (too negative)

 Both raise an exception under IEEE754

FP RoundingFP Rounding

 Rounding is important
– Small errors accumulate over billions of ops

 FP rounding hardware helps

21

– Compute extra guard bit beyond 23/52 bits

– Further, compute additional round bit beyond that
 Multiply may result in leading 0 bit, normalize shifts guard

bit into product, leaving round bit for rounding

– Finally, keep sticky bit that is set whenever ‘1’ bits
are “lost” to the right
 Differentiates between 0.5 and 0.500000000001

FP FP
Adder Adder

0 10 1 0 1

Control

Small ALU

Sign Exponent Significand Sign Exponent Significand

Exponent
difference

Shift right
Shift smaller
number right

Compare
exponents

22

Big ALU

Shift left or right

Rounding hardware

Sign Exponent Significand

Increment or
decrement

0 10 1

Add

Normalize

Round

FP MultiplicationFP Multiplication

 Sign: Ps = As xor Bs

 Exponent: PE = AE + BE
– Due to bias/excess, must subtract bias

e = e1 + e2

23

e e1 + e2
E = e + 1023 = e1 + e2 + 1023
E = (E1 – 1023) + (E2 – 1023) + 1023
E = E1 + E2 –1023

 Significand: PF = AF x BF
– Standard integer multiply (23b or 52b + g/r/s bits)
– Use Wallace tree of CSAs to sum partial products

FP MultiplicationFP Multiplication

 Compute sign, exponent, significand
 Normalize

– Shift left, right by 1

24

Shift left, right by 1

 Check for overflow, underflow
 Round
 Normalize again (if necessary)

ECE/CS 552: Introduction To Computer Architecture 5

Limitations of Scalar PipelinesLimitations of Scalar Pipelines

 Scalar upper bound on throughput
– IPC <= 1 or CPI >= 1

– Solution: wide (superscalar) pipeline

25

 Inefficient unified pipeline
– Long latency for each instruction

– Solution: diversified, specialized pipelines

 Rigid pipeline stall policy
– One stalled instruction stalls all newer instructions

– Solution: Out-of-order execution

Impediments to High IPCImpediments to High IPC

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

26

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

Instruction FlowInstruction Flow

 Objective: Fetch multiple instructions per cycle
 Challenges:

– Branches: control dependences

27

 Predict target and direction

– Branch target misalignment
 Target near end of line

 Alignment hardware, etc.

– Instruction cache misses
 Cache organization

 Prefetching, etc.

Instruction Memory

PC

3 instructions fetched

Branch Condition PredictionBranch Condition Prediction

TT
T

N

T

NT
T

TNTN
NN
N

T

T
T

N

TT
T

Branch inst. Information Branch target
address for predict. address

28

 Hardware table remembers
– History of past several branches encoded by FSM
– Current state used to generate prediction

 State of the art:
– Multiple FSMs, dynamically pick “best” one
– Major topic in 752 and research community

TN
T

TN
T N

N
N

Register Data FlowRegister Data Flow

 Program data dependences cause hazards
– True dependences (RAW)
– Antidependences (WAR)

29

– Output dependences (WAW)
 When are registers read and written?

– Out of program order!
– Hence, any/all of these can occur

 Solution to all three: register renaming

Register RenamingRegister Renaming
Dispatch Buffer

Reservation

Dispatch

Stations

- Read register or
- Assign register tag

- Monitor reg. tag
- Receive data

- Advance instructions
 to reservation stations

30
Complete

“Dynamic

Completion Buffer

Branch

Execution”

 being forwarded
- Issue when all
 operands ready

ECE/CS 552: Introduction To Computer Architecture 6

Memory Data FlowMemory Data Flow

 Main impediments:
– Memory data dependences:

 WAR/WAW: stores commit in order
Hazards not possible Why?

31

– Hazards not possible. Why?

 RAW: loads must check pending stores
– Store queue keeps track of pending store addresses

– Loads check against these addresses

– Similar to register bypass logic

– Comparators are 32 or 64 bits wide (address size)

 Major source of complexity in modern designs

– Data cache misses

Superscalar SummarySuperscalar Summary

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

32

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

Superscalar SummarySuperscalar Summary

 Instruction flow
– Branches, jumps, calls: predict target, direction
– Fetch alignment
– Instruction cache misses

33

– Instruction cache misses
 Register data flow

– Register renaming: RAW/WAR/WAW
 Memory data flow

– In-order stores: WAR/WAW
– Store queue: RAW
– Data cache misses

Memory HierarchyMemory Hierarchy

 Memory
– Just an “ocean of bits”
– Many technologies are available

 Key issues

34

 Key issues
– Technology (how bits are stored)
– Placement (where bits are stored)
– Identification (finding the right bits)
– Replacement (finding space for new bits)
– Write policy (propagating changes to bits)

 Must answer these regardless of memory type

Types of MemoryTypes of Memory
Type Size Speed Cost/bit

Register < 1KB < 1ns $$$$

On-chip SRAM 8KB-6MB < 10ns $$$

35

p

Off-chip SRAM 1Mb – 16Mb < 20ns $$

DRAM 64MB – 1TB < 100ns $

Disk 40GB – 1PB < 20ms ~0

Memory HierarchyMemory Hierarchy

Registers

On-Chip
SRAMCI

TY

O
ST

36

Off-Chip
SRAM

DRAM

Disk

CA
PA

C

SP
EE

D
 a

nd
 C

O

ECE/CS 552: Introduction To Computer Architecture 7

 Need lots of bandwidth

Why Memory Hierarchy?Why Memory Hierarchy?

65

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW 










37

 Need lots of storage
– 64MB (minimum) to multiple TB

 Must be cheap per bit
– (TB x anything) is a lot of money!

 These requirements seem incompatible

sec

6.5 GB


Why Memory Hierarchy?Why Memory Hierarchy?

 Fast and small memories
– Enable quick access (fast cycle time)
– Enable lots of bandwidth (1+ L/S/I-fetch/cycle)

 Slower larger memories

38

 Slower larger memories
– Capture larger share of memory
– Still relatively fast

 Slow huge memories
– Hold rarely-needed state
– Needed for correctness

 All together: provide appearance of large, fast
memory with cost of cheap, slow memory

Why Does a Hierarchy Work?Why Does a Hierarchy Work?

 Locality of reference
– Temporal locality

 Reference same memory location repeatedly

i l l li

39

– Spatial locality
 Reference near neighbors around the same time

 Empirically observed
– Significant!
– Even small local storage (8KB) often satisfies

>90% of references to multi-MB data set

Why Locality?Why Locality?

 Analogy:
– Library (Disk)
– Bookshelf (Main memory)
– Stack of books on desk (off-chip cache)

40

– Stack of books on desk (off-chip cache)
– Opened book on desk (on-chip cache)

 Likelihood of:
– Referring to same book or chapter again?

 Probability decays over time
 Book moves to bottom of stack, then bookshelf, then library

– Referring to chapter n+1 if looking at chapter n?

Memory HierarchyMemory Hierarchy
CPU

I & D L1 Cache

Temporal Locality
•Keep recently referenced
items at higher levels

•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels

•Future references satisfied
quickly

41

Shared L2 Cache

Main Memory

Disk

Four Burning QuestionsFour Burning Questions
 These are:

– Placement
 Where can a block of memory go?

– Identification
 How do I find a block of memory?

42

 How do I find a block of memory?

– Replacement
 How do I make space for new blocks?

– Write Policy
 How do I propagate changes?

 Consider these for caches
– Usually SRAM

 Will consider main memory, disks later

ECE/CS 552: Introduction To Computer Architecture 8

Caches: SetCaches: Set--associativeassociative
SRAM Cache

Hash

Address

Index
a Tags a Data Blocks

Index

43

Data Out

Offset

?=
?=

?=
?=

Tag

Caches: DirectCaches: Direct--MappedMapped

Hash

Address

Index
Tag Data

Index

44

Data Out

Offset

?=
Tag

Caches: FullyCaches: Fully--associativeassociative

SRAM CacheHash

Address

a Tags a Data Blocks

45

Data Out

Offset

?=
?=

?=
?=

Tag

Placement and IdentificationPlacement and Identification

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

I d i l (b f) S l f bl k

46

 Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)
– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)
– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

 Total size = BS x B = BS x S x (B/S)

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

Cache ExampleCache Example
Tag0 Tag1 LRU

01 11 1

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

47

10 d 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss
Load 0x33 110011 0/1 Miss
Load 0x11 010001 0/0 (lru) Miss/Evict
Store 0x29 101001 2/0 Hit/Dirty

II--Caches and PipeliningCaches and Pipelining
PC Tag Array Data Array

48

IR
“NOP”

Hit/Miss

?=

Fill FSM

Memory

FILL FSM:
1. Fetch from memory

• Critical word first
• Save in fill buffer

2. Write data array
3. Write tag array
4. Miss condition ends

ECE/CS 552: Introduction To Computer Architecture 9

DD--Caches and PipeliningCaches and Pipelining

 Pipelining loads from cache
– Hit/Miss signal from cache

– Stalls pipeline or inject NOPs?

49

p p j
 Hard to do in current real designs, since wires are

too slow for global stall signals

– Instead, treat more like branch misprediction
 Cancel/flush pipeline

 Restart when cache fill logic is done

DD--Caches and PipeliningCaches and Pipelining

 Stores more difficult
– MEM stage:

 Perform tag check
 Only enable write on a hit

50

y
 On a miss, must not write (data corruption)

– Problem:
 Must do tag check and data array access sequentially
 This will hurt cycle time

– Better solutions exist
 Beyond scope of this course
 If you want to do a data cache in your project, come talk to

me!

Caches and PerformanceCaches and Performance

 Caches
– Enable design for common case: cache hit

 Cycle time, pipeline organization

 Recovery policy

51

 Recovery policy

– Uncommon case: cache miss
 Fetch from next level

– Apply recursively if multiple levels

 What to do in the meantime?

 What is performance impact?
 Various optimizations are possible

Cache Misses and Cache Misses and
PerformancePerformance
 How does this affect performance?
 Performance = Time / Program

Instructions Cycles Time= X X

52

 Cache organization affects cycle time
– Hit latency

 Cache misses affect CPI

y

Program Instruction Cycle

(code size)

= X X

(CPI) (cycle time)

Cache Misses and CPICache Misses and CPI

 Pl is miss penalty at each of n levels of cache
 MPIl is miss rate per instruction at each of n

l

n

l
l

hit MPIP
inst

cycles
CPI  

1

53

 MPIl is miss rate per instruction at each of n
levels of cache

 Miss rate specification:
– Per instruction: easy to incorporate in CPI
– Per reference: must convert to per instruction

 Local: misses per local reference
 Global: misses per ifetch or load or store

Cache Miss RateCache Miss Rate

 Determined by:
– Program characteristics

 Temporal locality

54

 Spatial locality

– Cache organization
 Block size, associativity, number of sets

ECE/CS 552: Introduction To Computer Architecture 10

Cache Miss Rates: 3 C’s [Hill]Cache Miss Rates: 3 C’s [Hill]

 Compulsory miss
– First-ever reference to a given block of memory

 Capacity

55

– Working set exceeds cache capacity

– Useful blocks (with future references) displaced

 Conflict
– Placement restrictions (not fully-associative) cause

useful blocks to be displaced

– Think of as capacity within set

Caches SummaryCaches Summary

 Four questions
– Placement

 Direct-mapped, set-associative, fully-associative

56

– Identification
 Tag array used for tag check

– Replacement
 LRU, FIFO, Random

– Write policy
 Write-through, writeback

Caches SummaryCaches Summary

 Hit latency

l

n

l
l

hit MPIP
inst

cycles
CPI  

1

57

– Block size, associativity, number of blocks

 Miss penalty
– Overhead, fetch latency, transfer, fill

 Miss rate
– 3 C’s: compulsory, capacity, conflict

– Determined by locality, cache organization

Register FileRegister File

 Registers managed by programmer/compiler
– Assign variables, temporaries to registers

– Limited name space matches available storage

58

– Learn more in CS536, CS701

Placement Flexible (subject to data type)

Identification Implicit (name == location)

Replacement Spill code (store to stack frame)

Write policy Write-back (store on replacement)

Main Memory and Virtual MemoryMain Memory and Virtual Memory

 Use of virtual memory
– Main memory becomes another level in the memory

hierarchy
– Enables programs with address space or working set

59

Enables programs with address space or working set
that exceed physically available memory
 No need for programmer to manage overlays, etc.
 Sparse use of large address space is OK

– Allows multiple users or programs to timeshare
limited amount of physical memory space and address
space

 Bottom line: efficient use of expensive resource,
and ease of programming

Virtual MemoryVirtual Memory

 Enables
– Use more memory than system has
– Think program is only one running

 Don’t have to manage address space usage across programs

60

 Don t have to manage address space usage across programs
 E.g. think it always starts at address 0x0

– Memory protection
 Each program has private VA space: no-one else can clobber

it

– Better performance
 Start running a large program before all of it has been loaded

from disk

ECE/CS 552: Introduction To Computer Architecture 11

Address TranslationAddress Translation

 O/S and hardware communicate via PTE

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute

61

 O/S and hardware communicate via PTE
 How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)

– PTBR is private for each program
 Context switch replaces PTBR contents

Address TranslationAddress Translation

PAVADPTBR

Virtual Page Number Offset

+

62

PAVADPTBR +

Multilevel Page TableMultilevel Page Table

PTBR +

Offset

63

+

+

Hashed Page TableHashed Page Table

PTBR

Virtual Page Number Offset

H h PTE2PTE1PTE0 PTE3

64

PTBR Hash PTE2PTE1PTE0 PTE3

HighHigh--Performance VMPerformance VM

 VA translation
– Additional memory reference to PTE
– Each instruction fetch/load/store now 2 memory

references

65

references
 Or more, with multilevel table or has collisions

– Even if PTE are cached, still slow
 Hence, use special-purpose cache for PTEs

– Called TLB (translation lookaside buffer)
– Caches PTE entries
– Exploits temporal and spatial locality (just a cache)

TLB TLB

66

ECE/CS 552: Introduction To Computer Architecture 12

Virtual Memory ProtectionVirtual Memory Protection
 Each process/program has private virtual address

space
– Automatically protected from rogue programs

 Sharing is possible, necessary, desirable
– Avoid copying staleness issues etc

67

Avoid copying, staleness issues, etc.
 Sharing in a controlled manner

– Grant specific permissions
 Read
 Write
 Execute
 Any combination

– Store permissions in PTE and TLB

VM SharingVM Sharing

 Share memory locations by:
– Map shared physical location into both

address spaces:

68

 E.g. PA 0xC00DA becomes:
– VA 0x2D000DA for process 0

– VA 0x4D000DA for process 1

– Either process can read/write shared location

 However, causes synonym problem

VA SynonymsVA Synonyms

 Virtually-addressed caches are desirable
– No need to translate VA to PA before cache lookup

– Faster hit time, translate only on misses

bl

69

 However, VA synonyms cause problems
– Can end up with two copies of same physical line

 Solutions:
– Flush caches/TLBs on context switch

– Extend cache tags to include PID
 Effectively a shared VA space (PID becomes part of address)

Error Detection and CorrectionError Detection and Correction

 Main memory stores a huge number of bits
– Probability of bit flip becomes nontrivial
– Bit flips (called soft errors) caused by

 Slight manufacturing defects

70

 Slight manufacturing defects
 Gamma rays and alpha particles
 Interference
 Etc.

– Getting worse with smaller feature sizes
 Reliable systems must be protected from soft

errors via ECC (error correction codes)
– Even PCs support ECC these days

Error Correcting CodesError Correcting Codes
 Probabilities:

– P(1 word no errors) > P(single error) > P(two errors)
>> P(>2 errors)

 Detection - signal a problem

71

 Detection - signal a problem

 Correction - restore data to correct value

 Most common

– Parity - single error detection

– SECDED - single error correction; double bit
detection

11--bit ECCbit ECC
Power Correct #bits Comments

Nothing 0,1 1

SED 00 11 2 01 10 detect errors

72

SED 00,11 2 01,10 detect errors

SEC 000,111 3 001,010,100 => 0
110,101,011 => 1

SECDED 0000,1111 4 One 1 => 0
Two 1’s => error
Three 1’s => 1

ECE/CS 552: Introduction To Computer Architecture 13

ECCECC

 Reduced overhead by doing codes on
word, not bit

bits SED overhead SECDED overhead

73

bits SED overhead SECDED overhead

1 1 (100%) 3 (300%)

32 1 (3%) 7 (22%)

64 1 (1.6%) 8 (13%)

n 1 (1/n) 1 + log2 n + a little

6464--bit ECCbit ECC

 64 bits data with 8 check bits
dddd…..d ccccccccc

 Use eight by 9 SIMMS = 72 bits

74

 Intuition
– One check bit is parity
– Other check bits point to

 Error in data, or
 Error in all check bits, or
 No error

ECCECC

 To store (write)
– Use data0 to compute check0

– Store data0 and check0

75

0 0

 To load
– Read data1 and check1

– Use data1 to compute check2

– Syndrome = check1 xor check2

 I.e. make sure check bits are equal

44--bit SECDED Examplebit SECDED Example
Bit Position 1 2 3 4 5 6 7 8

Codeword C1 C2 b1 C3 b2 b3 b4 P

Original data 1 0 1 1 0 1 0 0 Syndrome

No corruption 1 0 1 1 0 1 0 0 0 0 0, P ok

1 bit corrupted 1 0 0 1 0 1 0 0 0 1 1, P !ok

parityevenP

bbbC

bbbC

bbbC

_
4323

4312

4211







76

 4 data bits, 3 check bits, 1 parity bit
 Syndrome is xor of check bits C1-3

– If (syndrome==0) and (parity OK) => no error
– If (syndrome != 0) and (parity !OK) => flip bit position pointed

to by syndrome
– If syndrome != 0) and (parity OK) => double-bit error

p ,

2 bits corrupted 1 0 0 1 1 1 0 0 1 1 0, P ok

Memory Hierarchy SummaryMemory Hierarchy Summary

 Memory hierarchy: Register file
– Under compiler/programmer control

– Complex register allocation algorithms to optimize
tili ti

77

utilization

 Memory hierarchy: Virtual Memory
– Placement: fully flexible

– Identification: through page table

– Replacement: approximate LRU or LFU

– Write policy: write-through

VM SummaryVM Summary

 Page tables
– Forward page table

 &PTE = PTBR + VPN * sizeof(PTE)

M ltil l t bl

78

– Multilevel page table
 Tree structure enables more compact storage for sparsely

populated address space

– Inverted or hashed page table
 Stores PTE for each real page instead of each virtual page

 HPT size scales up with physical memory

– Also used for protection, sharing at page level

ECE/CS 552: Introduction To Computer Architecture 14

Main Memory SummaryMain Memory Summary

 TLB
– Special-purpose cache for PTEs
– Often accessed in parallel with L1 cache

 Main memory design

79

 Main memory design
– Commodity DRAM chips
– Wide design space for

 Minimizing cost, latency
 Maximizing bandwidth, storage

– Susceptible to soft errors
 Protect with ECC (SECDED)
 ECC also widely used in on-chip memories, busses

I/O Device ExamplesI/O Device Examples
Device I or O? Partner Data Rate

KB/s
Mouse I Human 0.01

Display O Human 60,000

80

Modem I/O Machine 2-8

LAN I/O Machine 500-6000

Tape Storage Machine 2000

Disk Storage Machine 2000-
100,000

I/O PerformanceI/O Performance

 What is performance?
 Supercomputers read/write 1GB of data

– Want high bandwidth to vast data (bytes/sec)
 Transaction processing does many independent

81

 Transaction processing does many independent
small I/Os
– Want high I/O rates (I/Os per sec)
– May want fast response times

 File systems
– Want fast response time first
– Lots of locality

Buses in a Buses in a
Computer Computer
System System

Processor Memory
Backplane bus

a. I/O devices

Processor Memory
Processor-memory bus

Bus

adapter
Bus

adapter

I/O
bus

I/O
bus

Bus

adapter

I/O
bus

82

b.

Processor Memory
Processor-memory bus

c.

Bus
adapter

Backplane
bus

Bus
adapter

I/O bus

Bus
adapter

I/O bus

BusesBuses

 Synchronous – has clock
– Everyone watches clock and latches at appropriate

phase

T ti t k fi d i bl b f l k

83

– Transactions take fixed or variable number of clocks

– Faster but clock limits length

– E.g. processor-memory

 Asynchronous – requires handshake
– More flexible

– I/O

Interfacing to I/O DevicesInterfacing to I/O Devices
I/O Device Communication

Control Flow Granularity

Mechanics of Control Flow

Outbound Control Flow

Programmed I/O

Fine-grained (shallow adapters)
Coarse-grained (deep adapters, e.g. channels)

84

Mechanics of Data Flow

Programmed I/O
Direct Memory Access (DMA)

Software Cache Coherence
Hardware Cache Coherence

Inbound Control Flow

Programmed I/O
Memory-mapped Control Registers

Polling
Interrupt-driven

ECE/CS 552: Introduction To Computer Architecture 15

MultiprogrammingMultiprogramming
Single User:

CPU1 Disk Access CPU1 Think Time

CPU1

Disk Access

CPU1

Think Time

Time-shared:

85

CPU2

Disk Access

CPU2

Think Time

CPU3

Disk Access

CPU3

Think Time

Summary Summary –– I/OI/O

 I/O devices
– Human interface – keyboard, mouse, display
– Nonvolatile storage – hard drive, tape
– Communication – LAN modem

86

– Communication – LAN, modem
 Buses

– Synchronous, asynchronous
– Custom vs. standard

 Interfacing
– O/S: protection, virtualization, multiprogramming
– Interrupts, DMA, cache coherence

Multiprocessor MotivationMultiprocessor Motivation

 So far: one processor in a system
 Why not use N processors

– Higher throughput via parallel jobs
Cost effective

87

– Cost-effective
 Adding 3 CPUs may get 4x throughput at only 2x cost

– Lower latency from multithreaded applications
 Software vendor has done the work for you
 E.g. database, web server

– Lower latency through parallelized applications
 Much harder than it sounds

Connect at Memory: Connect at Memory:
MultiprocessorsMultiprocessors
 Shared Memory Multiprocessors

– All processors can address all physical memory

– Demands evolutionary operating systems changes

88

– Higher throughput with no application changes

– Low latency, but requires parallelization with proper
synchronization

 Most successful: Symmetric MP or SMP
– 2-64 microprocessors on a bus

– Too much bus traffic so add caches

Leakage Power (Static/DC)Leakage Power (Static/DC)
 Transistors aren’t perfect on/off switches
 Even in static CMOS, transistors leak

– Channel (source/drain) leakage
– Gate leakage through insulator

 High-K dielectric replacing SiO2 helps
 Leakage compounded by

Source

Gate

g p y
– Low threshold voltage

 Low Vth => fast switching, more leakage
 High Vth => slow switching, less leakage

– Higher temperature
 Temperature increases with power
 Power increases with C, V2, A, f

 Rough approximation: leakage proportional to area
– Transistors aren’t free, unless they’re turned off

 Controlling leakage
– Power gating (turn off unused blocks)

Drain

Why MulticoreWhy Multicore

Core Core Core
Core

Core

Core

Core

Single Core Dual Core Quad Core

Core area A ~A/2 ~A/4

Core power W ~W/2 ~W/4

Chip power W + O W + O’ W + O’’

Core performance P 0.9P 0.8P

Chip performance P 1.8P 3.2P

ECE/CS 552: Introduction To Computer Architecture 16

Dynamic PowerDynamic Power

 Aka AC power, switching power
 Static CMOS: current flows when transistors turn on/off

AfkCVPdyn
2

– Combinational logic evaluates
– Sequential logic (flip-flop, latch) captures new value (clock edge)

 Terms
– C: capacitance of circuit (wire length, no. & size of transistors)
– V: supply voltage
– A: activity factor
– f: frequency

 Moore’s Law: which terms increase, which decrease?
– Historically voltage scaling has saved us, but not any more

Cache Coherence ProblemCache Coherence Problem

P0 P1
Load A Load A
Store A<= 1 Load A

92

A 0 A 01

Memory

Cache Coherence ProblemCache Coherence Problem

P1 P1
Load A Load A
Store A<= 1 Load A

93

A 0 A 0

Memory

1 A 1

Sample Invalidate Protocol (MESI)Sample Invalidate Protocol (MESI)

M BR

LW

EV or
BW

LW

I

SE

EV or
BW or
BU

LR/SLR/~S

LW

BW

EV or
BW

BR

Multithreaded ProcessorsMultithreaded Processors

MT Approach Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system context
switch

Fine-grained Everything but register file and control logic/state Switch every cycle

Coarse-grained Everything but I-fetch buffers, register file and
con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers, return All contexts concurrently active; no

 Many approaches for executing multiple threads on a
single die
– Mix-and-match: IBM Power7 8-core CMP x 4-way SMT

address stack, architected register file, control
logic/state, reorder buffer, store queue, etc.

switching

CMT Various core components (e.g. FPU), secondary
cache, system interconnect

All contexts concurrently active; no
switching

CMP Secondary cache, system interconnect All contexts concurrently active; no
switching

Niagara Block Diagram Niagara Block Diagram [Source: J. [Source: J. LaudonLaudon]]

 8 in-order cores, 4 threads each
 4 L2 banks, 4 DDR2 memory controllers

ECE/CS 552: Introduction To Computer Architecture 17

SummarySummary
 Why multicore now?
 Thread-level parallelism
 Shared-memory multiprocessors

Coherence

© Hill, Lipasti
97

– Coherence
– Memory ordering
– Split-transaction buses

 Multithreading
 Multicore processors

Midterm ScopeMidterm Scope
 Chapter 3.3-3.5:

– Multiplication, Division, Floating Point
 Chapter 4.10-4.11: Enhancing performance

– Superscalar lecture notes
MIPS R10K reading on course web page

98

– MIPS R10K reading on course web page
 Chapter 5: Memory Hierarchy

– Caches, virtual memory
– SECDED (handout)

 Chapter 6: I/O
 Chapter 5.7-5.9, 7: Multiprocessors

– Lecture notes on power and multicore
– Lecture notes on multithreading

