
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Instruction SetsECE/CS 552: Instruction Sets
Instructor:Mikko H. Lipasti

llFall 2010
University of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Instructions (354 Review)Instructions (354 Review)
 Instructions are the “words” of a computer
 Instruction set architecture (ISA) is its

vocabulary
 This defines most of the interface to the

processor (not quite everything)
 Implementations can and do vary
 Intel 486->Pentium->P6->Core Duo->Core i7

Instructions cont’dInstructions cont’d

 MIPS ISA used in 552:
 Simple, sensible, regular, widely used

 Most common: x86 (IA-32)
 Intel Pentium/Core i7 AMD Athlon etc Intel Pentium/Core i7, AMD Athlon, etc.

 Others:
 PowerPC (Mac, IBM servers)
 SPARC (Sun)
 ARM (cell phones, embedded systems)

 We won’t write programs in this course

ForecastForecast

 Basics
 Registers and ALU ops
 Memory and load/storeMemory and load/store
 Branches and jumps
 Etc.

BasicsBasics

 C statement
f = (g + h) – (i + j)

 MIPS instructions
add t0, g, h

add t1, i, j

sub f, t0, t1

 Opcode/mnemonic, operands,
source/destination

BasicsBasics

 Opcode: specifies the kind of operation
(mnemonic)

 Operands: input and output data p p p
(source/destination)

 Operands t0 & t1 are temporaries
 One operation, two inputs, one output
 Multiple instructions for one C statement

ECE/CS 552: Introduction To Computer Architecture 2

Why not bigger instructions?Why not bigger instructions?

 Why not “f = (g + h) – (i + j)” as one instruction?
 Church’s thesis: A very primitive computer can

compute anything that a fancy computer can
compute – you need only logical functions, read p y y g ,
and write memory, and data-dependent decisions

 Therefore, ISA selected for practical reasons:
– Performance and cost, not computability

 Regularity tends to improve both
– E.g. H/W to handle arbitrary number of operands is

complex and slow and UNNECESSARY

Registers and ALU opsRegisters and ALU ops

 Operands must be registers, not variables
– add $8, $17, $18
– add $9, $19, $20
– sub $16 $8 $9– sub $16, $8, $9

 MIPS has 32 registers $0-$31
 $8 and $9 are temps, $16 is f, $17 is g, $18 is h,

$19 is i and $20 is j
 MIPS also allows one constant called

“immediate”
– Later we will see immediate is restricted to 16 bits

Registers and ALURegisters and ALU

$0

Processor

er
s

$31

R
eg

is
te

ALU

ALU opsALU ops

 Some ALU ops:
– add, addi, addu, addiu (immediate, unsigned)
– sub …
– mul, div – wider result

32b 32b 64b d 32b x 32b = 64b product
 32b / 32b = 32b quotient and 32b remainder

– and, andi
– or, ori
– sll, srl

 Why registers?
– Short name fits in instruction word: log2(32) = 5 bits

 But are registers enough?

Memory and Load/StoreMemory and Load/Store

 Need more than 32 words of storage
 An array of locations M[j] indexed by j
 Data movement (on words or integers)Data movement (on words or integers)

– Load word for register <= memory

lw $17, 1002 # get input g

– Store word for register => memory

sw $16, 1001 # save output f

Memory and load/storeMemory and load/store

$0

Processor

st
er

s

Memory
0
1
2

$31

R
e

g
is

ALU

3

maxmem

1001
1002

f
g

ECE/CS 552: Introduction To Computer Architecture 3

Memory and load/storeMemory and load/store

 Important for arrays
A[i] = A[i] + h

$8 is temp, $18 is h, $21 is (i x 4)

Astart is &A[0] is 0x8000

lw $8, Astart($21) # or 8000($21)

add $8, $18, $8

sw $8, Astart($21)

 MIPS has other load/store for bytes and
halfwords

Memory and load/storeMemory and load/store

$0

Processor

st
er

s

Memory
0

4004 f

$31

R
e

g
is

ALU

maxmem

4004
4008

f
g

8000
8004

A[0]
A[1]

8008 A[2]

Aside on “Endian”Aside on “Endian”

 Big endian: MSB at address xxxxxx00
– E.g. IBM, SPARC

 Little endian: MSB at address xxxxxx11
– E.g. Intel x86

 Mode selectable
– E.g. PowerPC, MIPS

Branches and JumpsBranches and Jumps

While (i != j) {

j= j + i;

i= i + 1;

$8 is i, $9 is j

$10 is k

}
Loop: beq $8, $9, Exit

add $9, $9, $8

addi $8, $8 , 1

j Loop

Exit:

Branches and JumpsBranches and Jumps
better:

beq $8, $9, Exit # not !=

Loop: add $9, $9, $8

addi $8, $8 , 1

bne $8, $9, Loop

Exit:

Best to let compilers worry about such optimizations

Branches and JumpsBranches and Jumps

 What does bne do really?
– read $, read $9, compare

– Set PC = PC + 4 or PC = Target

d h h To do compares other than = or !=
– E.g.

blt $8, $9, Target # pseudoinstruction

– Expands to:

slt $1, $8, $9 # $1==($8<$9)==($8-$9)<0

bne $1, $0, Target # $0 is always 0

ECE/CS 552: Introduction To Computer Architecture 4

Branches and JumpsBranches and Jumps

 Other MIPS branches/jumps
beq $8, $9, imm # if ($8==$9) PC = PC + imm<< 2 else PC += 4;

bne …
slt, sle sgt, sge

 With immediate, unsigned
j addr # PC = addr
jr $12 # PC = $12
jal addr # $31 = PC + 4; PC = addr; used for ???

MIPS Machine LanguageMIPS Machine Language

 All instructions are 32 bits wide
 Assembly: add $1, $2, $3
 Machine language:

3322222222221111111111000000000033222222222211111111110000000000
10987654321098765432109876543210
00000000010000110000100000010000

000000 00010 00011 00001 00000 010000
alu-rr 2 3 1 zero add/signed

Instruction FormatInstruction Format

 R-format
– Opc rs rt rd shamt function

– 65 5 5 5 6

i i Digression:
– How do you store the number 4,392,976?

 Same as add $1, $2, $3

 Stored program: instructions are represented as
numbers
– Programs can be read/written in memory like numbers

Instruction FormatInstruction Format

 Other R-format: addu, sub, subi, etc.
 Assembly: lw $1, 100($2)
 Machine: 100011 00010 00001 0000000001100100Machine: 100011 00010 00001 0000000001100100

lw 2 1 100 (in binary)

 I-format
– Opc rs rt address/immediate

– 6 5 5 16

Instruction FormatInstruction Format

 I-format also used for ALU ops with immediates
– addi $1, $2, 100

– 001000 00010 00001 0000000001100100

h b l h bi What about constants larger than 16 bits
– Outside range: [-32768, 32767]?

1100 0000 0000 0000 1111?

lui $4, 12 # $4 == 0000 0000 1100 0000 0000 0000 0000 0000

ori $4, $4, 15 # $4 == 0000 0000 1100 0000 0000 0000 1111

 All loads and stores use I-format

Instruction FormatInstruction Format

 beq $1, $2, 7
000100 00001 00010 0000 0000 0000 0111
PC = PC + (0000 0111 << 2) # word offset

 Finally J format Finally, J-format
J address
Opcode addr
6 26

 Addr is weird in MIPS:
addr = 4 MSB of PC // addr // 00

ECE/CS 552: Introduction To Computer Architecture 5

Summary: Instruction FormatsSummary: Instruction Formats

R: opcode rs rt rd shamt function
6 5 5 5 5 6

I: opcode rs rt address/immediate
6 5 5 166 5 5 16

J: opcode addr
6 26

 Instruction decode:
– Read instruction bits

– Activate control signals

Procedure CallsProcedure Calls
 See section 2.8 for details

– Caller
 Save registers
 Set up parameters
 Call procedurep
 Get results
 Restore registers

– Callee
 Save more registers
 Do some work, set up result
 Restore registers
 Return

 Jal is special, otherwise just software convention

Procedure CallsProcedure Calls
 Stack is all-important
 Stack grows from larger to smaller addresses

(arbitrary)
 $29 is stack pointer; points just beyond valid data
 Push $2: Push $2:

addi $29, $29, -4
sw $2, 4($29)

 Pop $2:
lw $2, 4($29)
addi $29, $29, 4

 Cannot change order. Why? Interrupts.

ProcedureProcedure
ExampleExample

Swap(int v[], int k) {
int temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
$4 is v[] & $5 is k -- 1st & 2nd incoming argument
$8, $9 & $10 are temporaries that callee can use w/o saving

swap: add $9,$5,$5 # $9 = k+k
add $9,$9,$9 # $9 = k*4
add $9,$4,$9 # $9 = v + k*4 = &(v[k])
lw $8,0($9) # $8 = temp = v[k]
lw $10,4($9) # $10 = v[k+1]
sw $10,0($9) # v[k] = v[k+1]
sw $8,4($9) # v[k+1] = temp
jr $31 # return

Addressing ModesAddressing Modes

 There are many ways of accessing
operands

 Register addressing:g g
add $1, $2, $3

op rs rt rd . . . funct

register

Addressing ModesAddressing Modes

 Base addressing (aka displacement)
lw $1, 100($2) # $2 == 400, M[500] == 42

op rs rt Offset/displacementop rs rt Offset/displacement

register

Memory

Effective

address
42

400

100

ECE/CS 552: Introduction To Computer Architecture 6

Addressing ModesAddressing Modes

 Immediate addressing
addi $1, $2, 100

op rs rt immediate

Addressing ModesAddressing Modes

 PC relative addressing
beq $1, $2, 100 # if ($1==$2) PC = PC + 100

op rs rt address

PC

Memory

Effective

address

Addressing ModesAddressing Modes

 Not found in MIPS:
– Indexed: add two registers – base + index

– Indirect: M[M[addr]] – two memory [[]] y
references

– Autoincrement/decrement: add operand size

– Autoupdate – found in PowerPC, PA-RISC
 Like displacement, but update base register

Addressing ModesAddressing Modes

 Autoupdate
lwupdate $1,24($2) # $1 = M[$2+24]; $2 = $2 + 24

op rs rt addressop rs rt address

register

Memory

Effective

address

Delay

Addressing ModesAddressing Modes

for(i=0; i < N, i += 1)
sum += A[i];

$7 is sum, $8 is &a[i], $9 is N,$2 is tmp, $3 is i*4
Inner loop: Or:

lw $2, 0($8) lwupdate $2, 4($8)
addi $8, $8, 4 add $7, $7, $2
add $7, $7, $2

Where’s the bug? Before loop: sub $8, $8, 4

How to Choose ISAHow to Choose ISA

 Minimize what?
– Instrs/prog x cycles/instr x sec/cycle !!!

 In 1985-1995 technology, simple modes like
MIPS were greatMIPS were great
– As technology changes, computer design options

change
 If memory is limited, dense instructions are

important
 For high speed, pipelining and ease of pipelining

is important

ECE/CS 552: Introduction To Computer Architecture 7

Some Intel x86 (IASome Intel x86 (IA--32) History32) History
Year CPU Comment
1978 8086 16-bit with 8-bit bus from 8080; selected

for IBM PC
1980 8087 Floating Point Unit
1982 80286 24 bit dd t ti1982 80286 24-bit addresses, memory-map, protection

1985 80386 32-bit registers, flat memory addressing,
paging

1989 80486 Pipelining
1992 Pentium Superscalar
1995 Pentium

Pro
Out-of-order execution, 1997 MMX

1999 P-III SSE – streaming SIMD

Intel 386 Registers & MemoryIntel 386 Registers & Memory

 Registers
– 8 32b registers (but backward 16b & 8b: EAX, AX,

AH, AL)
– 4 special registers: stack (ESP) & frame (EBP)4 special registers: stack (ESP) & frame (EBP)
– Condition codes: overflow, sign, zero, parity, carry
– Floating point uses 8-element stack

 Memory
– Flat 32b or segmented (rarely used)
– Effective address =

(base_reg + (index_reg x scaling_factor) +
displacement)

Intel 386 ISAIntel 386 ISA

 Two register instructions: src1/dst, src2
reg/reg, reg/immed, reg/mem, mem/reg,

mem/imm

 Examples
mov EAX, 23 # 32b 2’s C imm 23 in EAX

neg [EAX+4] # M[EAX+4] = -M[EAX+4]

faddp ST(7), ST # ST = ST + ST(7)

jle label # PC = label if sign or zero flag set

Intel 386 ISA cont’dIntel 386 ISA cont’d

 Decoding nightmare
– Instructions 1 to 17 bytes

– Optional prefixes, postfixes alter semanticsp p , p
 AMD64 64-bit extension: 64b prefix byte

– Crazy “formats”
 E.g. register specifiers move around

– But key 32b 386 instructions not terrible

– Yet entire ISA has to correctly implemented

Current ApproachCurrent Approach

 Current technique used by Intel and AMD
– Decode logic translates to RISC uops

– Execution units run RISC uops

– Backward compatible

– Very complex decoder

– Execution unit has simpler (manageable) control
logic, data paths

 We use MIPS to keep it simple and clean
 Learn x86 on the job!

Complex InstructionsComplex Instructions

 More powerful instructions not faster
 E.g. string copy

– Option 1: move with repeat prefix for
memory-to-memory move
 Special-purpose

– Option 2: use loads/stores to/from registers
 Generic instructions

 Option 2 faster on same machine!
 (but which code is denser?)

ECE/CS 552: Introduction To Computer Architecture 8

ConclusionsConclusions

 Simple and regular
– Constant length instructions, fields in same place

 Small and fast
– Small number of operands in registers

 Compromises inevitable
– Pipelining should not be hindered

 Make common case fast!
 Backwards compatibility!

