
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Instruction SetsECE/CS 552: Instruction Sets
Instructor:Mikko H. Lipasti

llFall 2010
University of Wisconsin-Madison

Lecture notes partially based on set created by
Mark Hill.

Instructions (354 Review)Instructions (354 Review)
 Instructions are the “words” of a computer
 Instruction set architecture (ISA) is its

vocabulary
 This defines most of the interface to the

processor (not quite everything)
 Implementations can and do vary
 Intel 486->Pentium->P6->Core Duo->Core i7

Instructions cont’dInstructions cont’d

 MIPS ISA used in 552:
 Simple, sensible, regular, widely used

 Most common: x86 (IA-32)
 Intel Pentium/Core i7 AMD Athlon etc Intel Pentium/Core i7, AMD Athlon, etc.

 Others:
 PowerPC (Mac, IBM servers)
 SPARC (Sun)
 ARM (cell phones, embedded systems)

 We won’t write programs in this course

ForecastForecast

 Basics
 Registers and ALU ops
 Memory and load/storeMemory and load/store
 Branches and jumps
 Etc.

BasicsBasics

 C statement
f = (g + h) – (i + j)

 MIPS instructions
add t0, g, h

add t1, i, j

sub f, t0, t1

 Opcode/mnemonic, operands,
source/destination

BasicsBasics

 Opcode: specifies the kind of operation
(mnemonic)

 Operands: input and output data p p p
(source/destination)

 Operands t0 & t1 are temporaries
 One operation, two inputs, one output
 Multiple instructions for one C statement

ECE/CS 552: Introduction To Computer Architecture 2

Why not bigger instructions?Why not bigger instructions?

 Why not “f = (g + h) – (i + j)” as one instruction?
 Church’s thesis: A very primitive computer can

compute anything that a fancy computer can
compute – you need only logical functions, read p y y g ,
and write memory, and data-dependent decisions

 Therefore, ISA selected for practical reasons:
– Performance and cost, not computability

 Regularity tends to improve both
– E.g. H/W to handle arbitrary number of operands is

complex and slow and UNNECESSARY

Registers and ALU opsRegisters and ALU ops

 Operands must be registers, not variables
– add $8, $17, $18
– add $9, $19, $20
– sub $16 $8 $9– sub $16, $8, $9

 MIPS has 32 registers $0-$31
 $8 and $9 are temps, $16 is f, $17 is g, $18 is h,

$19 is i and $20 is j
 MIPS also allows one constant called

“immediate”
– Later we will see immediate is restricted to 16 bits

Registers and ALURegisters and ALU

$0

Processor

er
s

$31

R
eg

is
te

ALU

ALU opsALU ops

 Some ALU ops:
– add, addi, addu, addiu (immediate, unsigned)
– sub …
– mul, div – wider result

32b 32b 64b d 32b x 32b = 64b product
 32b / 32b = 32b quotient and 32b remainder

– and, andi
– or, ori
– sll, srl

 Why registers?
– Short name fits in instruction word: log2(32) = 5 bits

 But are registers enough?

Memory and Load/StoreMemory and Load/Store

 Need more than 32 words of storage
 An array of locations M[j] indexed by j
 Data movement (on words or integers)Data movement (on words or integers)

– Load word for register <= memory

lw $17, 1002 # get input g

– Store word for register => memory

sw $16, 1001 # save output f

Memory and load/storeMemory and load/store

$0

Processor

st
er

s

Memory
0
1
2

$31

R
e

g
is

ALU

3

maxmem

1001
1002

f
g

ECE/CS 552: Introduction To Computer Architecture 3

Memory and load/storeMemory and load/store

 Important for arrays
A[i] = A[i] + h

$8 is temp, $18 is h, $21 is (i x 4)

Astart is &A[0] is 0x8000

lw $8, Astart($21) # or 8000($21)

add $8, $18, $8

sw $8, Astart($21)

 MIPS has other load/store for bytes and
halfwords

Memory and load/storeMemory and load/store

$0

Processor

st
er

s

Memory
0

4004 f

$31

R
e

g
is

ALU

maxmem

4004
4008

f
g

8000
8004

A[0]
A[1]

8008 A[2]

Aside on “Endian”Aside on “Endian”

 Big endian: MSB at address xxxxxx00
– E.g. IBM, SPARC

 Little endian: MSB at address xxxxxx11
– E.g. Intel x86

 Mode selectable
– E.g. PowerPC, MIPS

Branches and JumpsBranches and Jumps

While (i != j) {

j= j + i;

i= i + 1;

$8 is i, $9 is j

$10 is k

}
Loop: beq $8, $9, Exit

add $9, $9, $8

addi $8, $8 , 1

j Loop

Exit:

Branches and JumpsBranches and Jumps
better:

beq $8, $9, Exit # not !=

Loop: add $9, $9, $8

addi $8, $8 , 1

bne $8, $9, Loop

Exit:

Best to let compilers worry about such optimizations

Branches and JumpsBranches and Jumps

 What does bne do really?
– read $, read $9, compare

– Set PC = PC + 4 or PC = Target

d h h To do compares other than = or !=
– E.g.

blt $8, $9, Target # pseudoinstruction

– Expands to:

slt $1, $8, $9 # $1==($8<$9)==($8-$9)<0

bne $1, $0, Target # $0 is always 0

ECE/CS 552: Introduction To Computer Architecture 4

Branches and JumpsBranches and Jumps

 Other MIPS branches/jumps
beq $8, $9, imm # if ($8==$9) PC = PC + imm<< 2 else PC += 4;

bne …
slt, sle sgt, sge

 With immediate, unsigned
j addr # PC = addr
jr $12 # PC = $12
jal addr # $31 = PC + 4; PC = addr; used for ???

MIPS Machine LanguageMIPS Machine Language

 All instructions are 32 bits wide
 Assembly: add $1, $2, $3
 Machine language:

3322222222221111111111000000000033222222222211111111110000000000
10987654321098765432109876543210
00000000010000110000100000010000

000000 00010 00011 00001 00000 010000
alu-rr 2 3 1 zero add/signed

Instruction FormatInstruction Format

 R-format
– Opc rs rt rd shamt function

– 65 5 5 5 6

i i Digression:
– How do you store the number 4,392,976?

 Same as add $1, $2, $3

 Stored program: instructions are represented as
numbers
– Programs can be read/written in memory like numbers

Instruction FormatInstruction Format

 Other R-format: addu, sub, subi, etc.
 Assembly: lw $1, 100($2)
 Machine: 100011 00010 00001 0000000001100100Machine: 100011 00010 00001 0000000001100100

lw 2 1 100 (in binary)

 I-format
– Opc rs rt address/immediate

– 6 5 5 16

Instruction FormatInstruction Format

 I-format also used for ALU ops with immediates
– addi $1, $2, 100

– 001000 00010 00001 0000000001100100

h b l h bi What about constants larger than 16 bits
– Outside range: [-32768, 32767]?

1100 0000 0000 0000 1111?

lui $4, 12 # $4 == 0000 0000 1100 0000 0000 0000 0000 0000

ori $4, $4, 15 # $4 == 0000 0000 1100 0000 0000 0000 1111

 All loads and stores use I-format

Instruction FormatInstruction Format

 beq $1, $2, 7
000100 00001 00010 0000 0000 0000 0111
PC = PC + (0000 0111 << 2) # word offset

 Finally J format Finally, J-format
J address
Opcode addr
6 26

 Addr is weird in MIPS:
addr = 4 MSB of PC // addr // 00

ECE/CS 552: Introduction To Computer Architecture 5

Summary: Instruction FormatsSummary: Instruction Formats

R: opcode rs rt rd shamt function
6 5 5 5 5 6

I: opcode rs rt address/immediate
6 5 5 166 5 5 16

J: opcode addr
6 26

 Instruction decode:
– Read instruction bits

– Activate control signals

Procedure CallsProcedure Calls
 See section 2.8 for details

– Caller
 Save registers
 Set up parameters
 Call procedurep
 Get results
 Restore registers

– Callee
 Save more registers
 Do some work, set up result
 Restore registers
 Return

 Jal is special, otherwise just software convention

Procedure CallsProcedure Calls
 Stack is all-important
 Stack grows from larger to smaller addresses

(arbitrary)
 $29 is stack pointer; points just beyond valid data
 Push $2: Push $2:

addi $29, $29, -4
sw $2, 4($29)

 Pop $2:
lw $2, 4($29)
addi $29, $29, 4

 Cannot change order. Why? Interrupts.

ProcedureProcedure
ExampleExample

Swap(int v[], int k) {
int temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

}
$4 is v[] & $5 is k -- 1st & 2nd incoming argument
$8, $9 & $10 are temporaries that callee can use w/o saving

swap: add $9,$5,$5 # $9 = k+k
add $9,$9,$9 # $9 = k*4
add $9,$4,$9 # $9 = v + k*4 = &(v[k])
lw $8,0($9) # $8 = temp = v[k]
lw $10,4($9) # $10 = v[k+1]
sw $10,0($9) # v[k] = v[k+1]
sw $8,4($9) # v[k+1] = temp
jr $31 # return

Addressing ModesAddressing Modes

 There are many ways of accessing
operands

 Register addressing:g g
add $1, $2, $3

op rs rt rd . . . funct

register

Addressing ModesAddressing Modes

 Base addressing (aka displacement)
lw $1, 100($2) # $2 == 400, M[500] == 42

op rs rt Offset/displacementop rs rt Offset/displacement

register

Memory

Effective

address
42

400

100

ECE/CS 552: Introduction To Computer Architecture 6

Addressing ModesAddressing Modes

 Immediate addressing
addi $1, $2, 100

op rs rt immediate

Addressing ModesAddressing Modes

 PC relative addressing
beq $1, $2, 100 # if ($1==$2) PC = PC + 100

op rs rt address

PC

Memory

Effective

address

Addressing ModesAddressing Modes

 Not found in MIPS:
– Indexed: add two registers – base + index

– Indirect: M[M[addr]] – two memory [[]] y
references

– Autoincrement/decrement: add operand size

– Autoupdate – found in PowerPC, PA-RISC
 Like displacement, but update base register

Addressing ModesAddressing Modes

 Autoupdate
lwupdate $1,24($2) # $1 = M[$2+24]; $2 = $2 + 24

op rs rt addressop rs rt address

register

Memory

Effective

address

Delay

Addressing ModesAddressing Modes

for(i=0; i < N, i += 1)
sum += A[i];

$7 is sum, $8 is &a[i], $9 is N,$2 is tmp, $3 is i*4
Inner loop: Or:

lw $2, 0($8) lwupdate $2, 4($8)
addi $8, $8, 4 add $7, $7, $2
add $7, $7, $2

Where’s the bug? Before loop: sub $8, $8, 4

How to Choose ISAHow to Choose ISA

 Minimize what?
– Instrs/prog x cycles/instr x sec/cycle !!!

 In 1985-1995 technology, simple modes like
MIPS were greatMIPS were great
– As technology changes, computer design options

change
 If memory is limited, dense instructions are

important
 For high speed, pipelining and ease of pipelining

is important

ECE/CS 552: Introduction To Computer Architecture 7

Some Intel x86 (IASome Intel x86 (IA--32) History32) History
Year CPU Comment
1978 8086 16-bit with 8-bit bus from 8080; selected

for IBM PC
1980 8087 Floating Point Unit
1982 80286 24 bit dd t ti1982 80286 24-bit addresses, memory-map, protection

1985 80386 32-bit registers, flat memory addressing,
paging

1989 80486 Pipelining
1992 Pentium Superscalar
1995 Pentium

Pro
Out-of-order execution, 1997 MMX

1999 P-III SSE – streaming SIMD

Intel 386 Registers & MemoryIntel 386 Registers & Memory

 Registers
– 8 32b registers (but backward 16b & 8b: EAX, AX,

AH, AL)
– 4 special registers: stack (ESP) & frame (EBP)4 special registers: stack (ESP) & frame (EBP)
– Condition codes: overflow, sign, zero, parity, carry
– Floating point uses 8-element stack

 Memory
– Flat 32b or segmented (rarely used)
– Effective address =

(base_reg + (index_reg x scaling_factor) +
displacement)

Intel 386 ISAIntel 386 ISA

 Two register instructions: src1/dst, src2
reg/reg, reg/immed, reg/mem, mem/reg,

mem/imm

 Examples
mov EAX, 23 # 32b 2’s C imm 23 in EAX

neg [EAX+4] # M[EAX+4] = -M[EAX+4]

faddp ST(7), ST # ST = ST + ST(7)

jle label # PC = label if sign or zero flag set

Intel 386 ISA cont’dIntel 386 ISA cont’d

 Decoding nightmare
– Instructions 1 to 17 bytes

– Optional prefixes, postfixes alter semanticsp p , p
 AMD64 64-bit extension: 64b prefix byte

– Crazy “formats”
 E.g. register specifiers move around

– But key 32b 386 instructions not terrible

– Yet entire ISA has to correctly implemented

Current ApproachCurrent Approach

 Current technique used by Intel and AMD
– Decode logic translates to RISC uops

– Execution units run RISC uops

– Backward compatible

– Very complex decoder

– Execution unit has simpler (manageable) control
logic, data paths

 We use MIPS to keep it simple and clean
 Learn x86 on the job!

Complex InstructionsComplex Instructions

 More powerful instructions not faster
 E.g. string copy

– Option 1: move with repeat prefix for
memory-to-memory move
 Special-purpose

– Option 2: use loads/stores to/from registers
 Generic instructions

 Option 2 faster on same machine!
 (but which code is denser?)

ECE/CS 552: Introduction To Computer Architecture 8

ConclusionsConclusions

 Simple and regular
– Constant length instructions, fields in same place

 Small and fast
– Small number of operands in registers

 Compromises inevitable
– Pipelining should not be hindered

 Make common case fast!
 Backwards compatibility!

