ECE/CS 552: Data Path and
Control

Instructor:Mikko H Lipasti

Fall 2010
University of Wisconsin-Madison

Lecture notes based on set created by Mark Hill.

Processor Implementation

e Forecast — heart of 552 — key to project
— Sequential logic design review (brief)
— Clock methodology (FSD)
— Datapath — 1 CPI
Single instruction, 2’s complement, unsigned
— Control
— Multiple cycle implementation (information only)
— Microprogramming
— Exceptions

Review Sequential Logic

e Logic is combinational if output is solely
function of inputs

— E.g. ALU of previous lecture

e Logic is sequential or “has state” if output
function of:

— Past and current inputs

— Past inputs remembered in “state”
— Of course, no magic

Review Sequential Logic
o

~Q

D

e Clock high, Q =D, ~Q = ~D after prop. Delay
e Clock low Q, ~Q remain unchanged
— Level-sensitive latch

Review Sequential Logic

D D D Q D D Q Q
latch latch _
C C Q

Ol

Nty

e E.g. Master/Slave D flip-flop

— While clock high, Q, follows D, but Qg holds
— At falling edge Q) propagates to Qg

Review Sequential Logic

D FF 4.@7
e Can build: r

e Why can this fail for a latch?

ECE/C 552: Introduction To Computer Architecture

Clocking Methology

e Motivation

- Design data and control without considering clock
— Use Fully Synchronous Design (FSD)
Just a convention to simplify design process
Restricts design freedom
Eliminates complexity, can guarantee timing correctness
Not really feasible in real designs
Even in 554 you will violate FSD

Our Methodology

e Only flip-flops
e All on the same edge (e.g. falling)
o All with same clock
— No need to draw clock signals
e All logic finishes in one cycle

)

Our Methodology, cont'd
new umi

e No clock gating!

— Book has bad write AND clock
examples
i t
o Correct design: curren
:

.
write

Delayed Clocks (Gating)

Clock

Gated clock

X
%
5]
e Problem:

— Some flip-flops receive gated clock late
— Data signal may violate setup & hold req’t

FSD Clocking Rules

S L

Clock

® T ook = Cycle time
® T = FF setup time requirement
® T4 = FF hold time requirement
e T, = FF combinational delay
® T..mp, = Combinational delay
e FSD Rules:

- Tclock > TFF + Tcombmax + Tsetup

- TFF + Tcombmin > Thuld

Datapath — 1 CPI

e Assumption: get whole instruction done in
one long cycle

e Instructions:

—add, sub, and, or slt, lw, sw, & beq
e Todo

— For each instruction type

— Putting it all together

ECE/C 552: Introduction To Computer Architecture

Fetch Instructions

e Fetch instruction,
then increment PC
— Same for all types
o Assumes
— PC updated every Read
cycle
— No branches or jumps
e After this instruction Mmemory
fetch next one

INStruction [—

ALU Instructions

e and $1, $2, $3 # $1 <= $2 & $3

Read
register 1 Read
Read data 1
Instruction register 2
Registers
Wirite:

register Read
Wite data 2

—_—

e E.g. MIPS R-format
Opcode s rt rd shamt function
6 5 5 5 5 6

Load/Store Instructions
o |lw $1, immed($2) # $1 <= M[SE(immed)+$2]
e E.g. MIPS I-format:

Opcode rt rt immed
6 5 5 16

Inatruction

111

Branch Instructions

o beq $1, $2, addr # if ($1==$2) PC = PC + addr<<2
e Actually
newPC =PC + 4
target = newPC + addr << 2 # in MIPS offset from newPC
if ($1-$2)==0)
PC = target
else
PC = newPC

Branch Instructions

P + 4 rom instruction datapathy
Inginuction rogisbee 1 Foad

fiead data t

agister 2 T branch
Registers ALU Zeso|
e T control logi
rogister Foad

datn 2

Branch targel

Read

l

wrte
datn

All Together

I |
1 M

u

¢ H

ECE/C 552: Introduction To Computer Architecture

DFF Bit Slice

. Han CE b
Register File?
c_Ad c B
’—x\— Adx —
4 Decoder e -
P
— 7 e
-
— 7 2
A_Adx A [~ 15 i - 0
A A
T bader DFF ‘ ‘ DFF ‘ ‘ DFF ‘ 15
B_Ad B B
- L\— Adx
4 Decoder
. | ¢
C=WitePort Data Ai) Data B()

A.B = Read Ports

Control Overview

e Single-cycle implementation
— Datapath: combinational logic, I-mem, regs, D-mem, PC
Last three written at end of cycle
- Need control - just combinational logic!
— Inputs:
Instruction (I-mem out)
Zero (for beq)
— Outputs:
Control lines for muxes
ALUop
Write-enables

Control Overview

e Fast control
— Divide up work on “need to know” basis
— Logic with fewer inputs is faster
e EQ.
— Global control need not know which ALUop

ALU Control

o Assume ALU uses

000 |and
001 |or

010 |add
110 |sub

111 |slt (set less than)
others |don’t care

ALU Control

Instruction |Operation |Opcode Function
add add 000000 100000
sub sub 000000 100010
and and 000000 100100
or or 000000 100101
slt slt 000000 101010

e ALU-ctrl = f(opcode,function)

But...don't forget

Instruction | Operation |Opcode |function
lw add 100011 | XXXXXX
SW add 101011 | XXXXXX
beq sub 000100 |100010

e To simplify ALU-ctrl
— ALUop = f(opcode)
2 bits 6 bits

ECE/C 552: Introduction To Computer Architecture

ALU Control

10 add, sub, and, ...
00 lw, sw
01 beq

o ALU-ctrl = f(ALUop, function)
e 3 bits 2 bits 6 bits
e Requires only five gates plus inverters

Control Signals Needed

Global Control

e R-format: opcode rs rt rd shamt function
6 5 5 5 5 6

e |-format: opcode rs rt address/immediate
6 5 5 16

e J-format: opcode address
6 26

Global Control

e Route instruction[25:21] as read regl spec
e Route instruction[20:16] are read reg2 spec

e Route instruction[20:16] (load) and and
instruction[15:11] (others) to

— Write reg mux
e Call instruction[31:26] op[5:0]

Global Control

e Glabal control outputs

— ALU-ctrl - see above

— ALU src- R-format, beq vs. Id/st

— MemRead - lw

— MemWrite - sw

— MemtoReg - lw

— RegDst - Iw dst in bits 20:16, not 15:11
— RegWrite - all but beq and sw

— PCSrc - beq taken

Global Control

e Global control outputs
— Replace PCsrc with
Branch beq
PCSrc = Branch * Zero
e What are the inputs needed to determine
above global control signals?
— Just Op[5:0]

ECE/C 552: Introduction To Computer Architecture

Global Control

Instruction|Opcode |RegDst | ALUSrc
rer 000000 1 0
Iw 100011 0 1
sw 101011 X 1
beq 000100 X 0
7?? others X X
e RegDst = ~Opl[0]
e ALUSrc = Op[0]
e RegWrite = ~Op[3] * ~Op[2]

Global Control

e More complex with entire MIPS ISA

— Need more systematic structure

— Want to share gates between control signals
e Common solution: PLA

— MIPS opcode space designed to minimize
PLA inputs, minterms, and outputs

e Refer to MIPS Opcode map

PLA

e In AND-plane, &
selected inputs to get
minterms

e In OR-plane, |
selected minterms to
get outputs

e Eg.

B

AND gates

[

Inputs {

productterms| [[T T]

OR gates

} Outputs
[

Control Signals; Add Jump_§

Signal

s w/Jumps

Control

o f_.'k_ v

What's wrong with single cycle?

Instructions Cycles Time
Program Instruction Cycle
(code size) (CPI) (cycle time)

e Critical path probably Iw:
— I-mem, reg-read, alu, d-mem, reg-write
e Other instructions faster
— E.g. rrr: skip d-mem
e Instruction variation much worse for full ISA and
real implementation:
— FP divide
— Cache misses (what the heck is this? — later)

ECE/C 552: Introduction To Computer Architecture

Single Cycle Implementation

e Solution
— Variable clock?
Too hard to control, design
— Fixed short clock
Variable cycles per instruction

Multi-cycle Implementation

e Clock cycle = max(i-mem,reg-read+reg-write,
ALU, d-mem)
o Reuse combinational logic on different cycles
— One memory
— One ALU without other adders
e But
- Control is more complex
— Need new registers to save values (e.g. IR)
Used again on later cycles
Logic that computes signals is reused

High-level Multi-cycle Data-path
o Note:

— Instruction register, memory data register

— One memory with address bus

— One ALU with ALUOut register

Instruction
register
PCl—t—des Address
Instruction

Memory ™~ or data
Memory

data
register

Data

niy
Register #

Registers
Register #

ALUOU

| Dat
a Register #

Comment on busses

e Share wires to reduce #signals
— Distributed multiplexor

e Multiple sources driving one bus
— Ensure only one is active!

Multi-cycle Ctrl Signals

Multi-cycle Steps

Step |Description | Sample Actions

IF Fetch IR=MEMIPC]
PC=PC+4
ID | Decode A=RF(IR[25:21])

B=RF(IR[20:16])
Target=PC+SE(IR[15:0] << 2)

EX Execute ALUout = A + SE(IR[15:0]) # Iw/sw
ALUout=Aop B #rrr
if (A==B) PC = target # beq

Mem Memory MEM[ALUout] = B # sw
MDR = MEM[ALUout] #lw

RF(IR[15:11]) = ALUout # rrr

WB | Writeback | Reg(IR[20:16]) = MDR # lw

ECE/C 552: Introduction To Computer Architecture

Multi-cycle Control

e Function of Op[5:0] and current step
e Defined as Finite State Machine (FSM) or
— Micro-program or microcode

Next

state —
Inputs ». outputs

Finite State Machine (FSM)

e For each state, define:
— Control signals for datapath for this cycle
— Control signals to determine next state

e All instructions start in same IF state

e Instructions terminate by making IF next
— After proper PC update, of course

Multi-cycle Example

e Datapath (Fig. 5.33 from book)
— Will walk and $1, $2, $3 through datapath

e Look at control FSM (Fig. 5.42 from book)
— Will walk and $1, $2, $3 through FSM

o Will skip

— Repeat for Iw, sw, beq taken, beq n-t, j

Multi-cycle
Example sat
(and)

ALUSIcA=0

ALUSIcB = 11
ALUOp =00

J
PCWrite
PCSource = 10

ALUSrcA=1 ALUSrcA=1 ALUSIcB = 00

EX [ALusrce =10 ALUSCB = 00 ALUOp = 01
ALUOp = 00 ALUOp = 10 PCWriteCond
RCSource = 0
w w \
WB
MEM MemRead Memwite R;SQD‘,SV";:
lorD = 1 lorD = 1 MomiaReg = 0
RegDst = 0 \
WB | Regwrite
MemtoReg = 1

Multi-cycle Example (and)

Nuts and Bolts--More on FSMs

e You will be using FSM control for parts of your
processor implementation

e There are multiple methods for specifying a state
machine

— Moore machine (output is function of state only)
— Mealy machine (output is function of state/input)
e There are different methods of assigning states

ECE/C 552: Introduction To Computer Architecture

FSMs--State Assignment

e State assignment is converting logical states
to binary representation
— Use ECE 352 methods to build real state machine
e |s state assignment interesting/important?
— Judicious choice of state representation can make
next state fcn/output fcn have fewer gates

— Optimal solution is hard, but having intuition is
helpful (CAD tools can also help in practice)

State Assignment--Example

e 10 states in multicycle control FSM
— Each state can have 1 of 16 (2*4) encodings
with “dense” state representation
— Any choice of encoding is fine functionally as
long as all states are unique
e Appendix C-26 example: RegWrite signal

State Assignment, IE State|t
RegWrite ALUSIEA=0

. Start ALUSIcB =11
Signal Summary

Statg 9 e Processor implementation
EX ALUSrcA =1 PCwrits tate 7
ﬂ‘lfg::'lgo PCSource = 10 - Datapath
— Control
———r— e Single cycle implementation
tate . .
MEM (" vemresd Memrie Regost =1, State 9 (10010) o Next: microprogramming
o o — e Remaining slides for reference only
State 4 (0100b)
RegDst = 0 {ate 8 (1000b)
w8 Me?:g‘g;;e:l Original: 2 inverters, 2 and3s, 1 or2
New: No gates--just bit 3!
Multi-cycle
ALUSrcB =11 H
Example s@t - Multi-cycle Example (lw)
LW | SW o
(Iw) -
EX :LLSSS,LC: Z 110 :I}SSS;BA 2 010 ALUOp =01 chﬁjﬁ!‘i 10
ALUOp =00 ALUOp =10 CSv;"ulrl::::m
o
MEM lemRea lemWrite RegDst =1
’\forDR: 1d NllorDV\:/ 1l Me':‘%‘g;ge: 0
RegDst =0
RegWrite
MemtoReg = 1

ECE/C 552: Introduction To Computer Architecture

Multi-cycle
Example s@t
(sw)

EX

ALUSrcA=1
ALUSICcB =00
ALUOp =10

ALUSrcA=1
ALUSIrcB =10
ALUOp =00

MEM RegDst = 1
RegWrite

MemtoReg =0

MemWrite
lorD=1

RegDst = 0
RegWrite

ALUSrcA 0
ALUSICB =11
ALUOp 00

PCWrite
PCSource = 10

MemtoReg = 1

Multi-cycle Example (sw)

et

Multi-cycle
Example sat
(beq T

ALUSIcB =01
ALUOp =00

ALUSIcA = 1
ALUSICB = 00
ALUOp =10

MEM RegDst = 1
RegWrite

MemtoReg =0

MemRead
lorD =1

MemWrite
loD=1

RegDst = 0
RegWrite

ALUSICB =11
ALUOp 00

ALUSrcA 0

PCWrite
PCSource = 10

MemtoReg = 1

Multi-cycle Example (bea T)

Multi-cycle Example (bea NT)

Multi-cycle
Example s@t

@)

ALUSrcA=0

ALUSICB = 11
ALUOp 00

ALUSrcA=1
ALUSrcB =00
ALUOp = 10

ALUSrcA=1
ALUSIcB =10
ALUOp = 00

PCWrite
PCSource = 10

EX

PC\NrIlECnnd

MEM MemRead MemWrite RegDst = 1
lorD =1 lorD =1 Regwrite
MemtoReg = 0

RegDst = 0
RegWrite
MemtoReg = 1

wB

ECE/C 552: Introduction To Computer Architecture

10

Multi-cycle Example (j)

ECE/C 552: Introduction To Computer Architecture

11

