
ECE/C 552: Introduction To Computer Architecture 1

ECE/CS 552: Data Path and ECE/CS 552: Data Path and
ControlControl

Instructor:Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill.

Processor ImplementationProcessor Implementation

 Forecast – heart of 552 – key to project
– Sequential logic design review (brief)

– Clock methodology (FSD)

– Datapath – 1 CPI
 Single instruction, 2’s complement, unsigned

– Control

– Multiple cycle implementation (information only)

– Microprogramming

– Exceptions

Review Sequential LogicReview Sequential Logic

 Logic is combinational if output is solely
function of inputs
– E.g. ALU of previous lecture

 Logic is sequential or “has state” if output
function of:
– Past and current inputs

– Past inputs remembered in “state”

– Of course, no magic

Review Sequential LogicReview Sequential Logic

 Clock high, Q = D, ~Q = ~D after prop. Delay
 Clock low Q, ~Q remain unchanged

– Level-sensitive latch

Review Sequential LogicReview Sequential Logic

 E.g. Master/Slave D flip-flop
– While clock high, QM follows D, but QS holds

– At falling edge QM propagates to QS

Review Sequential LogicReview Sequential Logic

 Can build:
Wh thi f il f l t h?

D FF +1

 Why can this fail for a latch?

ECE/C 552: Introduction To Computer Architecture 2

Clocking MethologyClocking Methology

 Motivation
– Design data and control without considering clock

– Use Fully Synchronous Design (FSD)
J i i lif d i Just a convention to simplify design process

 Restricts design freedom

 Eliminates complexity, can guarantee timing correctness

 Not really feasible in real designs

 Even in 554 you will violate FSD

Our MethodologyOur Methodology

 Only flip-flops
 All on the same edge (e.g. falling)
 All with same clock

– No need to draw clock signals
 All logic finishes in one cycle

FFs Logic FFsLogic

Our Methodology, cont’dOur Methodology, cont’d

 No clock gating!
– Book has bad

examples

state

write AND clock

new current

 Correct design: state
current

new

write

0

1

Delayed Clocks (Gating)Delayed Clocks (Gating)

Clock

Gated clock

X

D D
Delay

Clock

X Y

 Problem:
– Some flip-flops receive gated clock late

– Data signal may violate setup & hold req’t

X
Delay

Y

FSD Clocking RulesFSD Clocking Rules

 Tclock = cycle time
T FF t ti i t

Clock
D D

Delay

Clock

Y

Y

 Tsetup = FF setup time requirement
 Thold = FF hold time requirement
 TFF = FF combinational delay
 Tcomb = Combinational delay
 FSD Rules:

– Tclock > TFF + Tcombmax + Tsetup

– TFF + Tcombmin > Thold

Datapath Datapath –– 1 CPI1 CPI

 Assumption: get whole instruction done in
one long cycle

 Instructions:
– add, sub, and, or slt, lw, sw, & beq

 To do
– For each instruction type

– Putting it all together

ECE/C 552: Introduction To Computer Architecture 3

Fetch InstructionsFetch Instructions

 Fetch instruction,
then increment PC
– Same for all types

A Assumes
– PC updated every

cycle

– No branches or jumps

 After this instruction
fetch next one

ALU InstructionsALU Instructions

 and $1, $2, $3 # $1 <= $2 & $3

 E.g. MIPS R-format
Opcode rs rt rd shamt function
6 5 5 5 5 6

Load/Store InstructionsLoad/Store Instructions
 lw $1, immed($2) # $1 <= M[SE(immed)+$2]
 E.g. MIPS I-format:

Opcode rt rt immed
6 5 5 16

Branch InstructionsBranch Instructions

 beq $1, $2, addr # if ($1==$2) PC = PC + addr<<2

 Actually
newPC = PC + 4

target = newPC + addr << 2 # in MIPS offset from newPC

if (($1 - $2) == 0)
PC = target

else
PC = newPC

Branch InstructionsBranch Instructions All TogetherAll Together

ECE/C 552: Introduction To Computer Architecture 4

C_Adx C
Adx
Decoder

.

.

.4

Data_C(i)

DFF

DCE

DFF Bit Slice

Register File?Register File?

A_Adx A
Adx
Decoder

.

.

.4

B_Adx B
Adx
Decoder

.

.

.4

Data_A(i) Data_B(i)

15

i 015

0

...

.

.

.

DFF DFF DFF...

C = Write Port
A,B = Read Ports

Control OverviewControl Overview

 Single-cycle implementation
– Datapath: combinational logic, I-mem, regs, D-mem, PC

 Last three written at end of cycle

– Need control – just combinational logic!Need control just combinational logic!
– Inputs:

 Instruction (I-mem out)
 Zero (for beq)

– Outputs:
 Control lines for muxes
 ALUop
 Write-enables

Control OverviewControl Overview

 Fast control
– Divide up work on “need to know” basis

– Logic with fewer inputs is fasterg p

 E.g.
– Global control need not know which ALUop

ALU ControlALU Control

 Assume ALU uses

000 and
001 or001 or
010 add
110 sub
111 slt (set less than)
others don’t care

ALU ControlALU Control
Instruction Operation Opcode Function

add add 000000 100000

sub sub 000000 100010

 ALU-ctrl = f(opcode,function)

and and 000000 100100

or or 000000 100101

slt slt 000000 101010

But…don’t forgetBut…don’t forget

Instruction Operation Opcode function

lw add 100011 xxxxxx

sw add 101011 xxxxxx

 To simplify ALU-ctrl
– ALUop = f(opcode)

2 bits 6 bits

beq sub 000100 100010

ECE/C 552: Introduction To Computer Architecture 5

ALU ControlALU Control
10 add, sub, and, …
00 lw, sw
01 beq

 ALU-ctrl = f(ALUop, function)
 3 bits 2 bits 6 bits
 Requires only five gates plus inverters

Control Signals Control Signals NeededNeeded

Global ControlGlobal Control

 R-format: opcode rs rt rd shamt function
6 5 5 5 5 6

 I-format: opcode rs rt address/immediate
6 5 5 16

 J-format: opcode address
6 26

Global ControlGlobal Control

 Route instruction[25:21] as read reg1 spec
 Route instruction[20:16] are read reg2 spec
 Route instruction[20:16] (load) and andRoute instruction[20:16] (load) and and

instruction[15:11] (others) to
– Write reg mux

 Call instruction[31:26] op[5:0]

Global ControlGlobal Control

 Global control outputs
– ALU-ctrl - see above

– ALU src- R-format, beq vs. ld/st

– MemRead - lw

– MemWrite - sw

– MemtoReg - lw

– RegDst - lw dst in bits 20:16, not 15:11

– RegWrite - all but beq and sw

– PCSrc - beq taken

Global ControlGlobal Control

 Global control outputs
– Replace PCsrc with

 Branch beq

 PCSrc = Branch * Zero

 What are the inputs needed to determine
above global control signals?
– Just Op[5:0]

ECE/C 552: Introduction To Computer Architecture 6

Global Global ControlControl
Instruction Opcode RegDst ALUSrc

rrr 000000 1 0
lw 100011 0 1
sw 101011 x 1

 RegDst = ~Op[0]
 ALUSrc = Op[0]
 RegWrite = ~Op[3] * ~Op[2]

sw 101011 x 1
beq 000100 x 0
??? others x x

Global ControlGlobal Control

 More complex with entire MIPS ISA
– Need more systematic structure

– Want to share gates between control signalsg g

 Common solution: PLA
– MIPS opcode space designed to minimize

PLA inputs, minterms, and outputs

 Refer to MIPS Opcode map

PLAPLA
 In AND-plane, &

selected inputs to get
minterms

 In OR-plane, |
selected minterms to

t t tget outputs
 E.g.

Control Signals; Add JumpsControl Signals; Add Jumps

Control Signals Control Signals w/Jumpsw/Jumps What’s wrong with single cycle?What’s wrong with single cycle?

 Critical path probably lw:
I mem reg read alu d mem reg write

Instructions Cycles
Program Instruction

Time
Cycle

(code size)

X X

(CPI) (cycle time)

– I-mem, reg-read, alu, d-mem, reg-write
 Other instructions faster

– E.g. rrr: skip d-mem
 Instruction variation much worse for full ISA and

real implementation:
– FP divide
– Cache misses (what the heck is this? – later)

ECE/C 552: Introduction To Computer Architecture 7

Single Cycle ImplementationSingle Cycle Implementation

 Solution
– Variable clock?

 Too hard to control, design

– Fixed short clock
 Variable cycles per instruction

MultiMulti--cycle Implementationcycle Implementation

 Clock cycle = max(i-mem,reg-read+reg-write,
ALU, d-mem)

 Reuse combinational logic on different cycles
– One memoryOne memory
– One ALU without other adders

 But
– Control is more complex
– Need new registers to save values (e.g. IR)

 Used again on later cycles
 Logic that computes signals is reused

HighHigh--level Multilevel Multi--cycle Datacycle Data--pathpath
 Note:

– Instruction register, memory data register
– One memory with address bus
– One ALU with ALUOut register

Comment on bussesComment on busses

 Share wires to reduce #signals
– Distributed multiplexor

 Multiple sources driving one busp g
– Ensure only one is active!

MultiMulti--cycle Ctrl cycle Ctrl SignalsSignals MultiMulti--cycle Stepscycle Steps
Step Description Sample Actions
IF Fetch IR=MEM[PC]

PC=PC+4

ID Decode A=RF(IR[25:21])
B=RF(IR[20:16])
Target=PC+SE(IR[15:0] << 2)

EX Execute ALUout = A + SE(IR[15:0]) # lw/sw
ALUout = A op B # rrr
if (A==B) PC = target # beq

Mem Memory MEM[ALUout] = B # sw
MDR = MEM[ALUout] #lw
RF(IR[15:11]) = ALUout # rrr

WB Writeback Reg(IR[20:16]) = MDR # lw

ECE/C 552: Introduction To Computer Architecture 8

MultiMulti--cycle Controlcycle Control
 Function of Op[5:0] and current step
 Defined as Finite State Machine (FSM) or

– Micro-program or microcode

outputs

Next
StateNext

State Fn

Output
Fn

Current
state

Inputs

Finite State Machine (FSM)Finite State Machine (FSM)

 For each state, define:
– Control signals for datapath for this cycle

– Control signals to determine next stateg

 All instructions start in same IF state
 Instructions terminate by making IF next

– After proper PC update, of course

MultiMulti--cycle Examplecycle Example

 Datapath (Fig. 5.33 from book)
– Will walk and $1, $2, $3 through datapath

 Look at control FSM (Fig. 5.42 from book)(g)
– Will walk and $1, $2, $3 through FSM

 Will skip
– Repeat for lw, sw, beq taken, beq n-t, j

MultiMulti--cycle cycle
Example Example
(and)(and)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

MultiMulti--cycle Example (and)cycle Example (and) Nuts and BoltsNuts and Bolts----More on FSMsMore on FSMs
 You will be using FSM control for parts of your

processor implementation
 There are multiple methods for specifying a state

machine
– Moore machine (output is function of state only)

– Mealy machine (output is function of state/input)

 There are different methods of assigning states

ECE/C 552: Introduction To Computer Architecture 9

FSMsFSMs----State AssignmentState Assignment

 State assignment is converting logical states
to binary representation
– Use ECE 352 methods to build real state machine

 Is state assignment interesting/important?
– Judicious choice of state representation can make

next state fcn/output fcn have fewer gates

– Optimal solution is hard, but having intuition is
helpful (CAD tools can also help in practice)

State AssignmentState Assignment----ExampleExample

 10 states in multicycle control FSM
– Each state can have 1 of 16 (2^4) encodings

with “dense” state representation

– Any choice of encoding is fine functionally as
long as all states are unique

 Appendix C-26 example: RegWrite signal

State Assignment,State Assignment,

RegWrite RegWrite
Signal Signal

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

State 0 State 1

State 2 State 6 State 8 State 9
State 4 State 7

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB
State 3 State 5

State 7 (0111b)

State 4 (0100b)

Original: 2 inverters, 2 and3s, 1 or2

State 8 (1000b)

State 9 (1001b)

New: No gates--just bit 3!

SummarySummary

 Processor implementation
– Datapath

– Control

 Single cycle implementation
 Next: microprogramming
 Remaining slides for reference only

MultiMulti--cycle cycle
Example Example
(lw)(lw)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

MultiMulti--cycle Example (lw)cycle Example (lw)

ECE/C 552: Introduction To Computer Architecture 10

MultiMulti--cycle cycle
Example Example
(sw)(sw)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

MultiMulti--cycle Example (sw)cycle Example (sw)

MultiMulti--cycle cycle
Example Example
(beq T)(beq T)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

MultiMulti--cycle Example (beq T)cycle Example (beq T)

MultiMulti--cycle Example (beq NT)cycle Example (beq NT)
MultiMulti--cycle cycle
Example Example
(j)(j)

PCWrite
PCSource = 10

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 01
PCWriteCond
PCSource = 01

ALUSrcA = 1
ALUSrcB = 00
ALUOp = 10

Start

MemRead
ALUSrcA=0

IorD = 0
IRWrite

ALUSrcB = 01
ALUOp = 00

PCWrite
PCSrc = 00

ALUSrcA = 0
ALUSrcB = 11
ALUOp = 00

ALUSrcA = 1
ALUSrcB = 10
ALUOp = 00

LW | SW
RRR BEQ

J

IF ID

EX

MemRead
IorD = 1

MemWrite
IorD = 1

RegDst = 1
RegWrite

MemtoReg = 0

RegDst = 0
RegWrite

MemtoReg = 1

LW SW

MEM

WB

WB

ECE/C 552: Introduction To Computer Architecture 11

MultiMulti--cycle Example (j)cycle Example (j)

