
CS/ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: Microprogramming ECE/CS 552: Microprogramming
and Exceptionsand Exceptions

Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill.

MicroprogrammingMicroprogramming

 Alternative way of specifying control
 FSM

– State – bubbleState bubble

– Control signals in bubble

– Next state given by signals on arc

– Not a great language for specifying complex
events

 Instead, treat as a programming problem

MicroprogrammingMicroprogramming

 Datapath remains the same
 Control is specified differently but does the same
 Each cycle a microprogram field specifies

required control signalsrequired control signals

Label Alu Src1 Src2 Reg Memory Pcwrite Next?

Fetch Add Pc 4 Read pc Alu Alu +1

Add Pc Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

Lw2 Read alu +1

Write mdr fetch

FSM vs. MicroprogrammingFSM vs. Microprogramming

Benefits of MicroprogrammingBenefits of Microprogramming

 More disciplined control logic
– Easier to debug

 Enables family of machines with same ISA
 Enables more complex ISA (benefit?)
 Writeable control store allows late fixes
 But, in the late 1980’s

– CAD tools and PLAs offer similar discipline

– Caches make memory almost as fast as control store

State of the ArtState of the Art

 Specify control
– FSM – does not scale easily

– Microprogram – worksp g

– VHDL/Verilog – preferred

 Specify control in VHDL/Verilog
– CAD compile to PLA

– Could use ROM or RAM

CS/ECE 552: Introduction To Computer
Architecture 2

Horizontal vs. Vertical Horizontal vs. Vertical
MicrocodeMicrocode
 Horizontal

– Fewer and wider micro-instructions

– Less encoding

– Larger control store – may waste space (control lines)

 Vertical
– More and narrower micro-instructions

– Dense encoding

– Smaller control store – but may need more steps

Intellectual HeritageIntellectual Heritage
 Microprogramming seems dead
 But what if technology shifts:

– Control store is faster than caches?
 Also, “Very Long Instruction Word” or VLIW

O i i i i d ti i ti h t Y l– Origins in microcode optimization research at Yale
 Josh Fisher, VLIW startup company: Multiflow Trace
 Now used in Transmeta Crusoe, Intel IA-64, TI DSP family

– Explicitly Parallel Instruction-set Computing (EPIC)
 Microcode specifies parallel hardware operations
 Can generalize to express any parallel computation
 Simple hardware (like microcode engine); complex software

Operation 1 Operation 2 Operation 3 Operation 4 Branch

ExceptionsExceptions

 What happens?
– Instruction fetch page fault
– Illegal opcode
– Privileged opcode
– Arithmetic overflow
– Data page fault
– I/O device status change
– Power-on/reset

ExceptionsExceptions

 For some, we could test for the condition
– Arithmetic overflow

– I/O device ready (polling)y (p g)

 But most tests uselessly say “no”
 Solution:

– Surprise “procedure call”

– Called an exception

Exceptions: Big PictureExceptions: Big Picture

 Two types:
– Interrupt (asynchronous) or

– Trap (synchronous)p (y)

 Hardware handles initial reaction
 Then invokes a software exception handler

– By convention, at e.g. 0xC00

– O/S kernel provides code at the handler
address

Exceptions: HardwareExceptions: Hardware

 Sets state that identifies cause of exception
– MIPS: in exception_code field of Cause register

 Changes to kernel mode for dangerous work
h dahead

 Disables interrupts
– MIPS: recorded in status register

 Saves current PC (MIPS: exception PC)
 Jumps to specific address (MIPS: 0x80000080)

– Like a surprise JAL – so can’t clobber $31

CS/ECE 552: Introduction To Computer
Architecture 3

Exceptions: SoftwareExceptions: Software

 Exception handler:
– MIPS: .ktext at 0x80000080

 Set flag to detect incorrect entry
– Nested exception while in handler

 Save some registers
 Find exception type

– E.g. I/O interrupt or syscall
 Jump to specific exception handler

Exceptions: Software, cont’dExceptions: Software, cont’d

 Handle specific exception
 Jump to clean-up to resume user program
 Restore registers
 Reset flag that detects incorrect entry
 Atomically

– Restore previous mode (user vs. supervisor)
– Enable interrupts
– Jump back to program (using EPC)

Implementing ExceptionsImplementing Exceptions

 We worry only about hardware, not s/w
 IntCause

– 0 undefined instruction
1 arithmetic overflow– 1 arithmetic overflow

 Changes to the datapath
– Detect exception
– Additional source for next PC
– Storage for exception cause, return address, spare

register
 New states in control FSM

FSM With FSM With
Exceptions Exceptions

Implementing ExceptionsImplementing Exceptions

 New arcs in FSM just like regular arcs
 FSM more complex if must add many arcs
 Critical path may get worse
 Alternative: vectored interrupts

– PC = base = f(cause)
– E.g. PC = 0x80 + intcause << 7 # 32 instrs
– Faster
– More hardware, more space

ReviewReview
Type Control Datapath Time (CPI, cycle time)

Single-
cycle

Combinational No reuse 1 cycle, (imem + reg +
ALU + dmem)

Multi-
l

Combinational
+ FSM

Reuse [3,5] cycles, Max(imem,
ALU d)cycle + FSM reg, ALU, dmem)

We
want?

? ? ~1 cycle, Max(imem, reg,
ALU, dmem

 We will use pipelining to achieve last row

