
CS/ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: Microprogramming ECE/CS 552: Microprogramming
and Exceptionsand Exceptions

Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill.

MicroprogrammingMicroprogramming

 Alternative way of specifying control
 FSM

– State – bubbleState bubble

– Control signals in bubble

– Next state given by signals on arc

– Not a great language for specifying complex
events

 Instead, treat as a programming problem

MicroprogrammingMicroprogramming

 Datapath remains the same
 Control is specified differently but does the same
 Each cycle a microprogram field specifies

required control signalsrequired control signals

Label Alu Src1 Src2 Reg Memory Pcwrite Next?

Fetch Add Pc 4 Read pc Alu Alu +1

Add Pc Extshft Read Dispatch 1

Mem1 Add A Extend Dispatch 2

Lw2 Read alu +1

Write mdr fetch

FSM vs. MicroprogrammingFSM vs. Microprogramming

Benefits of MicroprogrammingBenefits of Microprogramming

 More disciplined control logic
– Easier to debug

 Enables family of machines with same ISA
 Enables more complex ISA (benefit?)
 Writeable control store allows late fixes
 But, in the late 1980’s

– CAD tools and PLAs offer similar discipline

– Caches make memory almost as fast as control store

State of the ArtState of the Art

 Specify control
– FSM – does not scale easily

– Microprogram – worksp g

– VHDL/Verilog – preferred

 Specify control in VHDL/Verilog
– CAD compile to PLA

– Could use ROM or RAM

CS/ECE 552: Introduction To Computer
Architecture 2

Horizontal vs. Vertical Horizontal vs. Vertical
MicrocodeMicrocode
 Horizontal

– Fewer and wider micro-instructions

– Less encoding

– Larger control store – may waste space (control lines)

 Vertical
– More and narrower micro-instructions

– Dense encoding

– Smaller control store – but may need more steps

Intellectual HeritageIntellectual Heritage
 Microprogramming seems dead
 But what if technology shifts:

– Control store is faster than caches?
 Also, “Very Long Instruction Word” or VLIW

O i i i i d ti i ti h t Y l– Origins in microcode optimization research at Yale
 Josh Fisher, VLIW startup company: Multiflow Trace
 Now used in Transmeta Crusoe, Intel IA-64, TI DSP family

– Explicitly Parallel Instruction-set Computing (EPIC)
 Microcode specifies parallel hardware operations
 Can generalize to express any parallel computation
 Simple hardware (like microcode engine); complex software

Operation 1 Operation 2 Operation 3 Operation 4 Branch

ExceptionsExceptions

 What happens?
– Instruction fetch page fault
– Illegal opcode
– Privileged opcode
– Arithmetic overflow
– Data page fault
– I/O device status change
– Power-on/reset

ExceptionsExceptions

 For some, we could test for the condition
– Arithmetic overflow

– I/O device ready (polling)y (p g)

 But most tests uselessly say “no”
 Solution:

– Surprise “procedure call”

– Called an exception

Exceptions: Big PictureExceptions: Big Picture

 Two types:
– Interrupt (asynchronous) or

– Trap (synchronous)p (y)

 Hardware handles initial reaction
 Then invokes a software exception handler

– By convention, at e.g. 0xC00

– O/S kernel provides code at the handler
address

Exceptions: HardwareExceptions: Hardware

 Sets state that identifies cause of exception
– MIPS: in exception_code field of Cause register

 Changes to kernel mode for dangerous work
h dahead

 Disables interrupts
– MIPS: recorded in status register

 Saves current PC (MIPS: exception PC)
 Jumps to specific address (MIPS: 0x80000080)

– Like a surprise JAL – so can’t clobber $31

CS/ECE 552: Introduction To Computer
Architecture 3

Exceptions: SoftwareExceptions: Software

 Exception handler:
– MIPS: .ktext at 0x80000080

 Set flag to detect incorrect entry
– Nested exception while in handler

 Save some registers
 Find exception type

– E.g. I/O interrupt or syscall
 Jump to specific exception handler

Exceptions: Software, cont’dExceptions: Software, cont’d

 Handle specific exception
 Jump to clean-up to resume user program
 Restore registers
 Reset flag that detects incorrect entry
 Atomically

– Restore previous mode (user vs. supervisor)
– Enable interrupts
– Jump back to program (using EPC)

Implementing ExceptionsImplementing Exceptions

 We worry only about hardware, not s/w
 IntCause

– 0 undefined instruction
1 arithmetic overflow– 1 arithmetic overflow

 Changes to the datapath
– Detect exception
– Additional source for next PC
– Storage for exception cause, return address, spare

register
 New states in control FSM

FSM With FSM With
Exceptions Exceptions

Implementing ExceptionsImplementing Exceptions

 New arcs in FSM just like regular arcs
 FSM more complex if must add many arcs
 Critical path may get worse
 Alternative: vectored interrupts

– PC = base = f(cause)
– E.g. PC = 0x80 + intcause << 7 # 32 instrs
– Faster
– More hardware, more space

ReviewReview
Type Control Datapath Time (CPI, cycle time)

Single-
cycle

Combinational No reuse 1 cycle, (imem + reg +
ALU + dmem)

Multi-
l

Combinational
+ FSM

Reuse [3,5] cycles, Max(imem,
ALU d)cycle + FSM reg, ALU, dmem)

We
want?

? ? ~1 cycle, Max(imem, reg,
ALU, dmem

 We will use pipelining to achieve last row

