
ECE 552: Introduction To Computer
Architecture 1

ECE/CS 552: Pipelining to ECE/CS 552: Pipelining to
SuperscalarSuperscalar

Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on notes by John P. Shen
Updated by Mikko Lipasti

Pipelining to SuperscalarPipelining to Superscalar

 Forecast
– Real pipelines

– IBM RISC Experiencep

– The case for superscalar

– Instruction-level parallel machines

– Superscalar pipeline organization

– Superscalar pipeline design

MIPS R2000/R3000 PipelineMIPS R2000/R3000 Pipeline
Stage Phase Function performed
IF φ1

Translate virtual instr. addr. using TLB

φ2
Access I-cache

RD φ1
Return instruction from I-cache, check tags & parity

Separate
Adder

φ2
Read RF; if branch, generate target

ALU φ1
Start ALU op; if branch, check condition

φ2
Finish ALU op; if ld/st, translate addr

MEM φ1
Access D-cache

φ2
Return data from D-cache, check tags & parity

WB φ1
Write RF

φ2

Intel i486 5Intel i486 5--stage Pipelinestage Pipeline
Stage Function Performed

IF Fetch instruction from 32B prefetch buffer
(separate fetch unit fills and flushes prefetch buffer)

ID-1 Translate instr. Into control signals or microcode address
I iti t dd ti d

Prefetch Queue
Holds 2 x 16B
??? instructions

Initiate address generation and memory access

ID-2 Access microcode memory
Send microinstruction(s) to execute unit

EX Execute ALU and memory operations

WB Write back to RF

IBM RISC Experience IBM RISC Experience
[Agerwala and Cocke 1987][Agerwala and Cocke 1987]
 Internal IBM study: Limits of a scalar pipeline?
 Memory Bandwidth

– Fetch 1 instr/cycle from I-cache
40% of instructions are load/store (D cache)– 40% of instructions are load/store (D-cache)

 Code characteristics (dynamic)
– Loads – 25%
– Stores 15%
– ALU/RR – 40%
– Branches & jumps – 20%

 1/3 unconditional (always taken)
 1/3 conditional taken, 1/3 conditional not taken

IBM ExperienceIBM Experience

 Cache Performance
– Assume 100% hit ratio (upper bound)
– Cache latency: I = D = 1 cycle default

 Load and branch scheduling Load and branch scheduling
– Loads

 25% cannot be scheduled (delay slot empty)
 65% can be moved back 1 or 2 instructions
 10% can be moved back 1 instruction

– Branches & jumps
 Unconditional – 100% schedulable (fill one delay slot)
 Conditional – 50% schedulable (fill one delay slot)

ECE 552: Introduction To Computer
Architecture 2

CPI OptimizationsCPI Optimizations

 Goal and impediments
– CPI = 1, prevented by pipeline stalls

 No cache bypass of RF, no load/branch
schedulingscheduling
– Load penalty: 2 cycles: 0.25 x 2 = 0.5 CPI
– Branch penalty: 2 cycles: 0.2 x 2/3 x 2 = 0.27 CPI
– Total CPI: 1 + 0.5 + 0.27 = 1.77 CPI

 Bypass, no load/branch scheduling
– Load penalty: 1 cycle: 0.25 x 1 = 0.25 CPI
– Total CPI: 1 + 0.25 + 0.27 = 1.52 CPI

More CPI OptimizationsMore CPI Optimizations

 Bypass, scheduling of loads/branches
– Load penalty:

 65% + 10% = 75% moved back, no penalty
 25% => 1 cycle penaltyy p y
 0.25 x 0.25 x 1 = 0.0625 CPI

– Branch Penalty
 1/3 unconditional 100% schedulable => 1 cycle
 1/3 cond. not-taken, => no penalty (predict not-taken)
 1/3 cond. Taken, 50% schedulable => 1 cycle
 1/3 cond. Taken, 50% unschedulable => 2 cycles
 0.20 x [1/3 x 1 + 1/3 x 0.5 x 1 + 1/3 x 0.5 x 2] = 0.167

 Total CPI: 1 + 0.063 + 0.167 = 1.23 CPI

Simplify BranchesSimplify Branches

 Assume 90% can be PC-relative
– No register indirect, no register access
– Separate adder (like MIPS R3000)
– Branch penalty reduced

15% Overhead
from program
dependences

– Branch penalty reduced
 Total CPI: 1 + 0.063 + 0.085 = 1.15 CPI = 0.87 IPC

PC-relative Schedulable Penalty
Yes (90%) Yes (50%) 0 cycle
Yes (90%) No (50%) 1 cycle
No (10%) Yes (50%) 1 cycle
No (10%) No (50%) 2 cycles

Processor PerformanceProcessor Performance
Processor Performance = ---------------

Time

Program

Instructions Cycles Time= X X

 In the 1980’s (decade of pipelining):
– CPI: 5.0 => 1.15

 In the 1990’s (decade of superscalar):
– CPI: 1.15 => 0.5 (best case)

Program Instruction Cycle

(code size)

X X

(CPI) (cycle time)

Revisit Amdahl’s LawRevisit Amdahl’s Law

No. of
Processors

N

1

h 1 - h

1 - f

f

 h = fraction of time in serial code
 f = fraction that is vectorizable
 v = speedup for f
 Overall speedup:

Time
1 1 f

v

f
f

Speedup



1

1

Revisit Amdahl’s LawRevisit Amdahl’s Law

 Sequential bottleneck
 Even if v is infinite

– Performance limited by nonvectorizable

f
v
f

f
v 




 1

1

1

1
lim

Performance limited by nonvectorizable
portion (1-f)

No. of
Processors

N

Time
1

h 1 - h

1 - f
f

ECE 552: Introduction To Computer
Architecture 3

Pipelined Performance ModelPipelined Performance Model

Pipeline
Depth

N

1

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled

(stalled)

1-g g

1

Pipeline
Depth

N

1

Pipelined Performance ModelPipelined Performance Model

 g = fraction of time pipeline is filled
 1-g = fraction of time pipeline is not filled

(stalled)

1-g g

1

Pipelined Performance ModelPipelined Performance Model

Pipeline
Depth

N

1

 Tyranny of Amdahl’s Law [Bob Colwell]
– When g is even slightly below 100%, a big

performance hit will result
– Stalled cycles are the key adversary and must be

minimized as much as possible

1-g g

1

Motivation for SuperscalarMotivation for Superscalar
[Agerwala and Cocke][Agerwala and Cocke]

5

6

7

8

 p

n=12

n=100
Speedup jumps from 3 to 4.3

for N=6, f=0.8, but s =2 instead
of s=1 (scalar)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Vectorizability f

S
pe

ed
up

 p

n=4

n=6

n=6,s=2

Typical Range

Superscalar ProposalSuperscalar Proposal

 Moderate tyranny of Amdahl’s Law
– Ease sequential bottleneck

– More generally applicableg y pp

– Robust (less sensitive to f)

– Revised Amdahl’s Law:

 
v
f

s
f

Speedup





1
1

Limits on Instruction Level Limits on Instruction Level
Parallelism (ILP)Parallelism (ILP)

Weiss and Smith [1984] 1.58

Sohi and Vajapeyam [1987] 1.81

Tjaden and Flynn [1970] 1.86 (Flynn’s bottleneck)

Tjaden and Flynn [1973] 1.96

Uht [1986] 2.00

Smith et al. [1989] 2.00Smith et al. [1989] 2.00

Jouppi and Wall [1988] 2.40

Johnson [1991] 2.50

Acosta et al. [1986] 2.79

Wedig [1982] 3.00

Butler et al. [1991] 5.8

Melvin and Patt [1991] 6

Wall [1991] 7 (Jouppi disagreed)

Kuck et al. [1972] 8

Riseman and Foster [1972] 51 (no control dependences)

Nicolau and Fisher [1984] 90 (Fisher’s optimism)

ECE 552: Introduction To Computer
Architecture 4

Superscalar ProposalSuperscalar Proposal

 Go beyond single instruction pipeline,
achieve IPC > 1

 Dispatch multiple instructions per cycle
P id ll li bl f f Provide more generally applicable form of
concurrency (not just vectors)

 Geared for sequential code that is hard to
parallelize otherwise

 Exploit fine-grained or instruction-level
parallelism (ILP)

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991]
 Baseline scalar RISC

– Issue parallelism = IP = 1
– Operation latency = OP = 1
– Peak IPC = 1

1
2

3
4

5
6

IF DE EX WB

1 2 3 4 5 6 7 8 90

TIME IN CYCLES (OF BASELINE MACHINE)

S
U

C
C

E
S

S
IV

E
IN

S
T

R
U

C
T

IO
N

S

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991]
 Superpipelined: cycle time = 1/m of baseline

– Issue parallelism = IP = 1 inst / minor cycle

– Operation latency = OP = m minor cycles

P k IPC i t / j l (d ?)– Peak IPC = m instr / major cycle (m x speedup?)

1
2

3
4

5

IF DE EX WB
6

1 2 3 4 5 6

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991]
 Superscalar:

– Issue parallelism = IP = n inst / cycle
– Operation latency = OP = 1 cycle
– Peak IPC = n instr / cycle (n x speedup?)y (p p)

IF DE EX WB

1
2
3

4
5
6

9

7
8

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991]
 VLIW: Very Long Instruction Word

– Issue parallelism = IP = n inst / cycle
– Operation latency = OP = 1 cycle
– Peak IPC = n instr / cycle = 1 VLIW / cycley y

IF DE

EX

WB

Classifying ILP MachinesClassifying ILP Machines
[Jouppi, DECWRL 1991]
 Superpipelined-Superscalar

– Issue parallelism = IP = n inst / minor cycle
– Operation latency = OP = m minor cycles
– Peak IPC = n x m instr / major cyclej y

IF DE EX WB

1
2
3

4
5
6

9

7
8

ECE 552: Introduction To Computer
Architecture 5

Superscalar vs. SuperpipelinedSuperscalar vs. Superpipelined
 Roughly equivalent performance

– If n = m then both have about the same IPC

– Parallelism exposed in space vs. time

Time in Cycles (of Base Machine)
0 1 2 3 4 5 6 7 8 9

SUPERPIPELINED

10 11 12 13

SUPERSCALAR
Key:

IFetch
Dcode

Execute
Writeback

Superscalar ChallengesSuperscalar Challenges

I-cache

FETCH

DECODE

Branch
Predictor Instruction

Buffer

Instruction
Flow

COMMIT

D-cacheStore
Queue

Reorder
Buffer

Integer Floating-point Media Memory

Register
Data

Memory
Data

EXECUTE

(ROB)

Flow

Flow

