
ECE/CS 552: Introduction To Computer
Architecture 1

ECE/CS 552: Cache MemoryECE/CS 552: Cache Memory
Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Lecture notes based on set created by Mark Hill
Updated by Mikko Lipasti

Big PictureBig Picture

 Memory
– Just an “ocean of bits”
– Many technologies are available

 Key issues Key issues
– Technology (how bits are stored)
– Placement (where bits are stored)
– Identification (finding the right bits)
– Replacement (finding space for new bits)
– Write policy (propagating changes to bits)

 Must answer these regardless of memory type

Types of MemoryTypes of Memory
Type Size Speed Cost/bit

Register < 1KB < 1ns $$$$

On-chip SRAM 8KB-6MB < 10ns $$$p

Off-chip SRAM 1Mb – 16Mb < 20ns $$

DRAM 64MB – 1TB < 100ns $

Disk 40GB – 1PB < 20ms ~0

C_Adx C
Adx
Decoder

.

.

.4

Data_C(i)

DFF

DCE

DFF Bit Slice

Technology Technology -- RegistersRegisters

A_Adx A
Adx
Decoder

.

.

.4

B_Adx B
Adx
Decoder

.

.

.4

Data_A(i) Data_B(i)

15

i 015

0

...

.

.

.

DFF DFF DFF...

C = Write Port
A,B = Read Ports

Technology Technology –– SRAMSRAM

C_Adx
select

Data_C(i)

A_Adx
select

B_Adx
select

“Word” Lines
-select a row

“Bit” Lines
-carry data in/out

C_Adx
select

Register Bit Slice

Data_A(i) Data_B(i)
C = Write Port
A,B = Read Ports

Technology Technology –– OffOff--chip SRAMchip SRAM

 Commodity
– 1Mb – 16Mb

 554 Lab SRAM
AS7C4096

“RAS”

– AS7C4096
– 512K x 8b

 512KB
 Or 4Mb

– 10-20ns
 Note: sense amp

– Analog circuit
– High-gain

amplifier
“CAS”

ECE/CS 552: Introduction To Computer
Architecture 2

Technology Technology –– DRAMDRAM

 Logically similar to SRAM
 Commodity DRAM chips

– E.g. 1Gb
Standardized address/data/control interfaces– Standardized address/data/control interfaces

 Very dense
– 1T per cell (bit)
– Data stored in capacitor – decays over time

 Must rewrite on read, refresh

 Density improving vastly over time
 Latency barely improving

Memory Timing Memory Timing –– ReadRead
Addr

Data

EN

tEN

tD tO

Chip 0 Chip 1

Data

Addr

EN1
EN0

 Latch-based SRAM or asynchronous DRAM (FPM/EDO)
– Multiple chips/banks share address bus and tristate data bus

– Enables are decoded from address to select bank
 E.g. bbbbbbb0 is bank 0, bbbbbbb1 is bank 1

 Timing constraints: straightforward
– tEN setup time from Addr stable to EN active (often zero)

– tD delay from EN to valid data (10ns typical for SRAM)

– tO delay from EN disable to data tristate off (nonzero)
© Hill, Lipasti

8

Memory Timing Memory Timing -- WriteWrite

WR & EN t i it f D t t ADDR

Addr

Data

WR
tS tP

tH

Chip 0 Chip 1

Data

Addr

EN1
EN0

WR

EN

 WR & EN triggers write of Data to ADDR
 Timing constraints: not so easy

– tS setup time from Data & Addr stable to WR pulse

– tP minimum write pulse duration

– tH hold time for data/addr beyond write pulse end

 Challenge: WR pulse must start late, end early
– >tS after Addr/Data, >tH before end of cycle

– Requires multicycle control or glitch-free clock divider
9

Technology Technology –– DiskDisk

 Covered in more detail later (input/output)
 Bits stored as magnetic charge
 Still mechanical!

– Disk rotates (3600-15000 RPM)

– Head seeks to track, waits for sector to rotate to it

– Solid-state replacements in the works
 MRAM, etc.

 Glacially slow compared to DRAM (10-20ms)
 Density improvements astounding (100%/year)

Memory HierarchyMemory Hierarchy

Registers

On-Chip
SRAMCI
TY

O
ST

Off-Chip
SRAM

DRAM

Disk

CA
PA

C

SP
EE

D
 a

nd
 C

O

 Need lots of bandwidth

Why Memory Hierarchy?Why Memory Hierarchy?

65

sec

144.0410.1

GB

Gcycles

Dref

B

inst

Dref

Ifetch

B

inst

Ifetch

cycle

inst
BW 










 Need lots of storage
– 64MB (minimum) to multiple TB

 Must be cheap per bit
– (TB x anything) is a lot of money!

 These requirements seem incompatible

sec

6.5 GB


ECE/CS 552: Introduction To Computer
Architecture 3

Why Memory Hierarchy?Why Memory Hierarchy?

 Fast and small memories
– Enable quick access (fast cycle time)
– Enable lots of bandwidth (1+ L/S/I-fetch/cycle)

 Slower larger memories Slower larger memories
– Capture larger share of memory
– Still relatively fast

 Slow huge memories
– Hold rarely-needed state
– Needed for correctness

 All together: provide appearance of large, fast
memory with cost of cheap, slow memory

Why Does a Hierarchy Work?Why Does a Hierarchy Work?

 Locality of reference
– Temporal locality

 Reference same memory location repeatedly

i l l li– Spatial locality
 Reference near neighbors around the same time

 Empirically observed
– Significant!
– Even small local storage (8KB) often satisfies

>90% of references to multi-MB data set

Why Locality?Why Locality?

 Analogy:
– Library (Disk)
– Bookshelf (Main memory)
– Stack of books on desk (off-chip cache)– Stack of books on desk (off-chip cache)
– Opened book on desk (on-chip cache)

 Likelihood of:
– Referring to same book or chapter again?

 Probability decays over time
 Book moves to bottom of stack, then bookshelf, then library

– Referring to chapter n+1 if looking at chapter n?

Memory HierarchyMemory Hierarchy
CPU

I & D L1 Cache

Temporal Locality
•Keep recently referenced
items at higher levels

•Future references satisfied
quickly

Spatial Locality
•Bring neighbors of recently
referenced to higher levels

•Future references satisfied
quickly

Shared L2 Cache

Main Memory

Disk

Four Burning QuestionsFour Burning Questions
 These are:

– Placement
 Where can a block of memory go?

– Identification
 How do I find a block of memory? How do I find a block of memory?

– Replacement
 How do I make space for new blocks?

– Write Policy
 How do I propagate changes?

 Consider these for caches
– Usually SRAM

 Will consider main memory, disks later

PlacementPlacement
Memory
Type

Placement Comments

Registers Anywhere;
Int, FP, SPR

Compiler/programmer
manages HUH?

Cache
(SRAM)

Fixed in H/W Direct-mapped,
set-associative,
fully-associative

DRAM Anywhere O/S manages

Disk Anywhere O/S manages

ECE/CS 552: Introduction To Computer
Architecture 4

PlacementPlacement

 Address Range
– Exceeds cache capacity

 Map address to finite capacity
SRAM Cache

Hash

Address

Index

Block Size

– Called a hash

– Usually just masks high-order bits

 Direct-mapped
– Block can only exist in one location

– Hash collisions cause problems

Data Out

Index Offset

32-bit Address

Offset

PlacementPlacement

 Fully-associative
– Block can exist anywhere
– No more hash collisions

 Identification

SRAM Cache

Hash

Address

Hit
Tag Check

?=

Tag

 Identification
– How do I know I have the

right block?
– Called a tag check

 Must store address tags
 Compare against address

 Expensive!
– Tag & comparator per block

Data Out

Offset

32-bit Address

Offset

Tag

PlacementPlacement

 Set-associative
– Block can be in a

locations

H h lli i

SRAM Cache

Hash

Address

Index
a Tags a Data Blocks

Index

– Hash collisions:
 a still OK

 Identification
– Still perform tag check

– However, only a in
parallel

Data Out

Offset

Offset

32-bit Address

Tag Index

?=
?=

?=
?=

Tag

Placement and IdentificationPlacement and Identification

Offset

32-bit Address

Tag Index

Portion Length Purpose

Offset o=log2(block size) Select word within block

I d i l (b f) S l f bl k

 Consider: <BS=block size, S=sets, B=blocks>
– <64,64,64>: o=6, i=6, t=20: direct-mapped (S=B)
– <64,16,64>: o=6, i=4, t=22: 4-way S-A (S = B / 4)
– <64,1,64>: o=6, i=0, t=26: fully associative (S=1)

 Total size = BS x B = BS x S x (B/S)

Index i=log2(number of sets) Select set of blocks

Tag t=32 - o - i ID block within set

ReplacementReplacement

 Cache has finite size
– What do we do when it is full?

 Analogy: desktop full?gy p
– Move books to bookshelf to make room

 Same idea:
– Move blocks to next level of cache

ReplacementReplacement

 How do we choose victim?
– Verbs: Victimize, evict, replace, cast out

 Several policies are possible
FIFO (first in first out)– FIFO (first-in-first-out)

– LRU (least recently used)
– NMRU (not most recently used)
– Pseudo-random (yes, really!)

 Pick victim within set where a = associativity
– If a <= 2, LRU is cheap and easy (1 bit)
– If a > 2, it gets harder
– Pseudo-random works pretty well for caches

ECE/CS 552: Introduction To Computer
Architecture 5

Write PolicyWrite Policy

 Memory hierarchy
– 2 or more copies of same block

 Main memory and/or disk

 Caches

 What to do on a write?
– Eventually, all copies must be changed

– Write must propagate to all levels

Write PolicyWrite Policy

 Easiest policy: write-through
 Every write propagates directly through

hierarchy
– Write in L1 L2 memory disk (?!?)Write in L1, L2, memory, disk (?!?)

 Why is this a bad idea?
– Very high bandwidth requirement
– Remember, large memories are slow

 Popular in real systems only to the L2
– Every write updates L1 and L2
– Beyond L2, use write-back policy

Write PolicyWrite Policy

 Most widely used: write-back
 Maintain state of each line in a cache

– Invalid – not present in the cache
Clean present but not written (unmodified)– Clean – present, but not written (unmodified)

– Dirty – present and written (modified)
 Store state in tag array, next to address tag

– Mark dirty bit on a write
 On eviction, check dirty bit

– If set, write back dirty line to next level
– Called a writeback or castout

Write PolicyWrite Policy

 Complications of write-back policy
– Stale copies lower in the hierarchy
– Must always check higher level for dirty copies before

accessing copy in a lower levelaccessing copy in a lower level
 Not a big problem in uniprocessors

– In multiprocessors: the cache coherence problem
 I/O devices that use DMA (direct memory

access) can cause problems even in uniprocessors
– Called coherent I/O
– Must check caches for dirty copies before reading

main memory

Cache ExampleCache Example
Tag0 Tag1 LRU

0

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

0

0

 Trace execution of:
Reference Binary Set/Way Hit/Miss

Cache ExampleCache Example
Tag0 Tag1 LRU

0

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

0

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss

ECE/CS 552: Introduction To Computer
Architecture 6

Cache ExampleCache Example
Tag0 Tag1 LRU

0

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

0

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit

Cache ExampleCache Example
Tag0 Tag1 LRU

0

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss

Cache ExampleCache Example
Tag0 Tag1 LRU

10 1

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss

Cache ExampleCache Example
Tag0 Tag1 LRU

10 11 0

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss
Load 0x33 110011 0/1 Miss

Cache ExampleCache Example
Tag0 Tag1 LRU

01 11 1

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss
Load 0x33 110011 0/1 Miss
Load 0x11 010001 0/0 (lru) Miss/Evict

Cache ExampleCache Example
Tag0 Tag1 LRU

01 11 1

0

 32B Cache: <BS=4,S=4,B=8>
– o=2, i=2, t=2; 2-way set-associative
– Initially empty
– Only tag array shown on right

 Trace execution of:

Tag Array

10 d 1

11 1

 Trace execution of:
Reference Binary Set/Way Hit/Miss
Load 0x2A 101010 2/0 Miss
Load 0x2B 101011 2/0 Hit
Load 0x3C 111100 3/0 Miss
Load 0x20 100000 0/0 Miss
Load 0x33 110011 0/1 Miss
Load 0x11 010001 0/0 (lru) Miss/Evict
Store 0x29 101001 2/0 Hit/Dirty

ECE/CS 552: Introduction To Computer
Architecture 7

Caches and PipeliningCaches and Pipelining

 Instruction cache
– No writes, so simpler

 Interface to pipeline:
Fetch address (from PC)

PC
– Fetch address (from PC)
– Supply instruction (to IR)

 What happens on a miss?
– Stall pipeline; inject nop
– Initiate cache fill from memory
– Supply requested instruction,

end stall condition

IR

II--Caches and PipeliningCaches and Pipelining
PC Tag Array Data Array

IR
“NOP”

Hit/Miss

?=

Fill FSM

Memory

FILL FSM:
1. Fetch from memory

• Critical word first
• Save in fill buffer

2. Write data array
3. Write tag array
4. Miss condition ends

DD--Caches and PipeliningCaches and Pipelining

 Pipelining loads from cache
– Hit/Miss signal from cache

– Stalls pipeline or inject NOPs?p p j
 Hard to do in current real designs, since wires are

too slow for global stall signals

– Instead, treat more like branch misprediction
 Cancel/flush pipeline

 Restart when cache fill logic is done

DD--Caches and PipeliningCaches and Pipelining

 Stores more difficult
– MEM stage:

 Perform tag check
 Only enable write on a hity
 On a miss, must not write (data corruption)

– Problem:
 Must do tag check and data array access sequentially
 This will hurt cycle time or force extra pipeline stage
 Extra pipeline stage delays loads as well: IPC hit!

Solution: Pipelining WritesSolution: Pipelining Writes

 Store #1 performs tag check only in MEM stage
– <value address cache way> placed in store buffer (SB)

MEM
St#1

WB
St#2

WB
St#1

MEM
St#2

…

W $
St#1

…

Tag Check
If hit place in SB
If miss stall, start fill

Perform D$ Write

– <value, address, cache way> placed in store buffer (SB)
 When store #2 reaches MEM stage

– Store #1 writes to data cache
 In the meantime, must handle RAW to store buffer

– Pending write in SB to address A
– Newer loads must check SB for conflict
– Stall/flush SB, or forward directly from SB

 Any load miss must also flush SB first
– Otherwise SB D$ write may be to wrong line

 Can expand to >1 entry to overlap store misses

SummarySummary
 Memory technology
 Memory hierarchy

– Temporal and spatial locality

 Caches Caches
– Placement

– Identification

– Replacement

– Write Policy

 Pipeline integration of caches

© Hill, Lipasti
42

