ECE/CS 552: Cache Memory
Instructor: Mikko H Lipasti

Fall 2010
University of Wisconsin-Madison

Lecture notes based on set created by Mark Hill
Updated by Mikko Lipasti

Big Picture

e Memory
- Just an “ocean of bits”
— Many technologies are available
e Key issues
— Technology (how bits are stored)
— Placement (where bits are stored)
— Identification (finding the right bits)
— Replacement (finding space for new bits)
— Write policy (propagating changes to bits)
e Must answer these regardless of memory type

Types of Memory

Type Size Speed | Cost/bit
Register <1KB <lns |$$$3$
On-chip SRAM |8KB-6MB |<10ns |$$$
Off-chip SRAM |1Mb - 16Mb |<20ns |$$
DRAM 64MB - 1TB |<100ns |$
Disk 40GB-1PB |<20ms |~0

TeChnOIOgy - SRAM “Bit” Lines

Data_C(i) -carry data in/out
A_Adx
sdlect

Word” Lines B Adx

-select a row sdlect

C_Adx
select

Lo g

Register Bit Slice

Data_A(i) Data B(i)
C = Write Port
AB = Read Ports

ECE/CS 552: Introduction To Computer
Architecture

DFF Bit Slice
. CE D
Technology - Registers
A
Data_C(i)
- N
C_Adx o [~
4 Decoder yd ///
L 7/
s -
A Adx A ~ 15 1 0
B 'S';;Dda DFF ‘ ‘ DFF ‘ ‘ DFF ‘ 15
B_Adx 2 ix
4 Decoder ‘ ‘ o
C = Write Port Data A(i) Data B(i)

A.B = Read Ports

Technology — Off-chip SRAM

e Commodity Ve
— 1Mb-16Mb
e 554 Lab SRAM
— AS7C4096 Al
- 512K x 8b b
512KB Ak
Or 4Mb e
— 10-20ns
e Note: sense amp
— Analog circuit
— High-gain
amplifier

B4 288 % B
Array v I
(4,194,304

Column deceder . —TT
Control o]
o L—TT
treutt o]
E o

R dlecoder

Technology - DRAM

e Logically similar to SRAM
e Commodity DRAM chips
- E.g. 1Gb
- Standardized address/data/control interfaces
e Very dense
— 1T per cell (bit)
— Data stored in capacitor — decays over time
Must rewrite on read, refresh
e Density improving vastly over time
e Latency barely improving

Memory Timing — Read

EN1
Addr — ENO

ten ! L Addr

Data
1

>

&

(S

en Data

e Latch-based SRAM or asynchronous DRAM (FPM/EDO)
— Multiple chips/banks share address bus and tristate data bus
— Enables are decoded from address to select bank
E.g. bbbbbbb0 is bank 0, bbbbbbb1 is bank 1

e Timing constraints: straightforward
— tgy Setup time from Addr stable to EN active (often zero)
— tp delay from EN to valid data (10ns typical for SRAM)

— to delay from EN disable to data tristate off (nonzero)
© Hill, Lipasti

Memory Timing - Write

[1
S & !
WR—# P —
ENTTL

e WR & EN triggers write of Data to ADDR
e Timing constraints: not so easy
— tg setup time from Data & Addr stable to WR pulse
— t, minimum write pulse duration
-ty hold time for data/addr beyond write pulse end
e Challenge: WR pulse must start late, end early
— >tgafter Addr/Data, >t,; before end of cycle
— Requires multicycle control or glitch-free clock divider

Technology — Disk

e Covered in more detail later (input/output)
e Bits stored as magnetic charge
o Still mechanical!

— Disk rotates (3600-15000 RPM)

— Head seeks to track, waits for sector to rotate to it

- Solid-state replacements in the works

MRAM, etc.

e Glacially slow compared to DRAM (10-20ms)
e Density improvements astounding (100%/year)

Memory Hierarchy

on-Chip
SRAM

Off-Chip
SRAM

DRAM

Disk

SPEED and COST

Why Memory Hierarchy?

e Need lots of bandwidth

BW

:1.oinst{1|fetch 48 04Dref 4B } 1Gcycles
cycle | inst Ifetch inst Dref sec
_56GB
T sec

e Need lots of storage
— 64MB (minimum) to multiple TB
e Must be cheap per bit

— (TB x anything) is a lot of money!
e These requirements seem incompatible

ECE/CS 552: Introduction To Computer
Architecture

Why Memory Hierarchy?

e Fast and small memories

— Enable quick access (fast cycle time)

— Enable lots of bandwidth (1+ L/S/I-fetch/cycle)
e Slower larger memories

— Capture larger share of memory

— Still relatively fast
e Slow huge memories

— Hold rarely-needed state

— Needed for correctness

e All together: provide appearance of large, fast
memory with cost of cheap, slow memory

Why Does a Hierarchy Work?

e Locality of reference
— Temporal locality
Reference same memory location repeatedly
— Spatial locality
Reference near neighbors around the same time
e Empirically observed
— Significant!
— Even small local storage (8KB) often satisfies
>90% of references to multi-MB data set

Why Locality?

e Analogy:
— Library (Disk)

Memory Hierarchy

Temporal Locality

=Keep recently referenced
items at higher levels

< Future references satisfied

Spatial Locality

= Bring neighbors of recently
referenced to higher levels

< Future references satisfied

— Write Policy
How do | propagate changes?
e Consider these for caches
— Usually SRAM
e Will consider main memory, disks later

- Bookshelf (Main memory) C=Y C=Y
— Stack of books on desk (off-chip cache) I
— Opened book on desk (on-chip cache)
e Likelihood of: 11
- Referring to same book or chapter again? ’ Main Memory |
Probability decays over time
Book moves to bottom of stack, then bookshelf, then library
- Referring to chapter n+1 if looking at chapter n?
Disk
Four Burning Questions Placement
e These are: Memory Placement |Comments
— Placement Type
" V‘:!‘f?re ‘;?” ablock of memory go? Registers | Anywhere; | Compiler/programmer
- Identification
How do I find a block of memory? Iqt' FP_' SPR mf;mages HUH?
— Replacement Cache Fixed in H/W Dlrect-mz_apped,
How do I make space for new blocks? (SRAM) set-associative,

fully-associative
DRAM Anywhere O/S manages

Disk Anywhere O/S manages

ECE/CS 552: Introduction To Computer
Architecture

Block Size Tag
Placement Placement woes il B —
//
. . /
o Address Range o e e Fully-associative PPN B e
— Exceeds cache capacity SRAM Cache — Block can exist any\{vhere R
e Map address to finite capacity - NO_][T‘Ore_haSh collisions
— Called a hash ° Ide:tl Izat:?(n | have th
— Usually just masks high-order bits - rigt\wl\tlbl(::)ck?now ave the
e Direct-mapped ottset ™7 — Called a tag check Offset N
- Block can only exist in one location Data Out Must store address tags Data Out
— Hash collisions cause problems ~32-bit Address Compare against address 32-Dit Address
‘ e Expensive! |
Index [Offset: Tag Offset
— Tag & comparator per block
Placement e Hleade Placement and Identification
32-bit Address
e Set-associative I L e il ey | Tag Index Oﬂset|
- BIOCl_(canbeina Portion | Length Purpose
locations Offset o0=log,(block size) Select word within block
— Hash collisions: Index i=log,(number of sets) | Select set of blocks
astill OK Tag t=32-0-i 1D block within set
e Identification . .
. I 02 Y .y e Consider: <BS=block size, S=sets, B=blocks>
— Still perform tag check | g A6 ——v o _
— However only ain 29 Y — <64,64,64>: 0=6, i=6, t=20: direct-mapped (S=B)
parallel »only Offset — <64,16,64>: 0=6, i=4, t=22: 4-way S-A (S=B/4)
32-bit Address 5 tl out - <64,%,64>: 0=6, i=0, t=26: fully associative (S=1)
ata o e Total size=BS x B=BS x S x (B/S)
Tag Index |Offset
Replacement Replacement
e Cache has finite size e How do we choose victim?
_ What do we do when it is full? — Verbs: V|(?t|{mze, evict, re_place, cast out
) , e Several policies are possible
e Analogy: desktop full? — FIFO (first-in-first-out)
— Move books to bookshelf to make room — LRU (least recently used)
o Same idea: - EMZU (no(tjmos(t recentll)ll UI§Ed)
- Pseudo-random (yes, really!
— Move blocks to next level of cache e Pick victim within set where a = associativity
- Ifa<=2, LRU is cheap and easy (1 bit)
- Ifa> 2, it gets harder
— Pseudo-random works pretty well for caches

ECE/CS 552: Introduction To Computer
Architecture

Write Policy

e Memory hierarchy

— 2 or more copies of same block
Main memory and/or disk
Caches

e What to do on a write?
— Eventually, all copies must be changed
— Write must propagate to all levels

Write Policy

e Easiest policy: write-through

e Every write propagates directly through
hierarchy
— Write in L1, L2, memory, disk (?!?)

e Why is this a bad idea?
- Very high bandwidth requirement
— Remember, large memories are slow

e Popular in real systems only to the L2
- Every write updates L1 and L2
— Beyond L2, use write-back policy

Write Policy

e Most widely used: write-back

e Maintain state of each line in a cache
— Invalid — not present in the cache
— Clean — present, but not written (unmodified)
— Dirty — present and written (modified)

e Store state in tag array, next to address tag
— Mark dirty bit on a write

e On eviction, check dirty bit
— If set, write back dirty line to next level
— Called a writeback or castout

Write Policy

e Complications of write-back policy
— Stale copies lower in the hierarchy

— Must always check higher level for dirty copies before
accessing copy in a lower level

e Not a big problem in uniprocessors
— In multiprocessors: the cache coherence problem

e 1/0 devices that use DMA (direct memory
access) can cause problems even in uniprocessors

— Called coherent 1/0
— Must check caches for dirty copies before reading

main memory
Cache Example Cache Example
e 32B Cache: <BS=4,5=4,B=8> Tago | Tagl |LRU e 32B Cache: <BS=4,5=4,B=8> Tago | Tagl |LRU
— 0=2, i=2, t=2; 2-way set-associative — 0=2, i=2, t=2; 2-way set-associative
— Initially empty 0 — Initially empty 0
- Only tag array shown on right 0 - Only tag array shown on right 0
e Trace execution of: e Trace execution of:
Reference |Binary Set/Way | Hit/Miss 0 Reference |Binary Set/Way | Hit/Miss 10 1
Load Ox2A | 101010 |2/0 Miss
0 0

ECE/CS 552: Introduction To Computer
Architecture

Cache Example

Cache Example

Tag Array Tag Array
e 32B Cache: <BS=4,5=4,B=8> TagO | Tagl | LRU e 32B Cache: <BS=4,5=4,B=8> TagO | Tagl | LRU
— 0=2, i=2, t=2; 2-way set-associative — 0=2, i=2, t=2; 2-way set-associative
— Initially empty 0 — Initially empty 0
— Only tag array shown on right o — Only tag array shown on right o
e Trace execution of: e Trace execution of:
Reference |Binary Set/Way | Hit/Miss 10 1 Reference |Binary Set/Way | Hit/Miss 10 1
Load Ox2A | 101010 |2/0 Miss Load Ox2A | 101010 |2/0 Miss
Load 0x2B | 101011 |2/0 Hit 0 Load Ox2B | 101011 |2/0 Hit 11 1
Load 0x3C 111100 |3/0 Miss
Cache Example g Aray Cache Example g Aray
e 32B Cache: <BS=4,5=4,B=8> Tag0 | Tagl |LRU e 32B Cache: <BS=4,5=4,B=8> Tago | Tagl |LRU
- 0=2, i=2, t=2; 2-way set-associative - 0=2, =2, t=2; 2-way set-associative
— Initially empty 10 1 — Initially empty 1041110
— Only tag array shown on right 0 — Only tag array shown on right 0
e Trace execution of: e Trace execution of:
Reference |Binary Set/Way | Hit/Miss 10 1 Reference |Binary Set/Way | Hit/Miss 10 1
Load Ox2A | 101010 |2/0 Miss Load Ox2A [101010 |2/0 Miss
Load 0x2B | 101011 |2/0 Hit 11 1 Load 0x2B | 101011 |2/0 Hit 11 1
Load 0x3C | 111100 |3/0 Miss Load 0x3C | 111100 |3/0 Miss
Load 0x20 | 100000 |0/0 Miss Load 0x20 | 100000 |0/0 Miss
Load 0x33 | 110011 |0/1 Miss
Cache Example Cache Example
e 32B Cache: <BS=4,5=4,B=8> Tago | Tagl |LRU e 32B Cache: <BS=4,5=4,B=8> Tago | Tagl |LRU
— 0=2, i=2, t=2; 2-way set-associative — 0=2, i=2, t=2; 2-way set-associative
— Initially empty or it ~ Initially empty oL 1 1
- Only tag array shown on right 0 - Only tag array shown on right 0
e Trace execution of: e Trace execution of:
Reference |Binary Set/Way | Hit/Miss 10 1 Reference |Binary Set/Way | Hit/Miss 10d 1
Load Ox2A | 101010 |2/0 Miss Load Ox2A | 101010 |2/0 Miss
Load Ox2B | 101011 |2/0 Hit 11 1 Load 0x2B | 101011 |2/0 Hit 11 1
Load 0x3C | 111100 |3/0 Miss Load 0x3C | 111100 |3/0 Miss
Load 0x20 | 100000 |0/0 Miss Load 0x20 | 100000 |0/0 Miss
Load 0x33 | 110011 |0/1 Miss Load 0x33 | 110011 |0/1 Miss
Load 0x11 [010001 |0/0 (Iru) |Miss/Evict Load 0x11 [010001 |0/0 (Iru) |Miss/Evict
Store 0x29 | 101001 | 2/0 Hit/Dirty

ECE/CS 552: Introduction To Computer
Architecture

Caches and Pipelining

e Instruction cache

— No writes, so simpler
o Interface to pipeline:

- Fetch address (from PC)

- Supply instruction (to IR)
e \What happens on a miss?

— Stall pipeline; inject nop

— Initiate cache fill from memory

— Supply requested instruction,
end stall condition

I-Caches and Pipelining

Tag Array Data Array

|
Hit/Miss

FILL FSM:
1. Fetch from memory
« Critical word first
+ Save in fill buffer
2. Write data array
3. Write tag array
4. Miss condition ends

D-Caches and Pipelining

e Pipelining loads from cache

— Hit/Miss signal from cache

— Stalls pipeline or inject NOPs?
Hard to do in current real designs, since wires are
too slow for global stall signals

— Instead, treat more like branch misprediction
Cancel/flush pipeline
Restart when cache fill logic is done

D-Caches and Pipelining

e Stores more difficult

- MEM stage:
Perform tag check
Only enable write on a hit
On a miss, must not write (data corruption)

— Problem:
Must do tag check and data array access sequentially
This will hurt cycle time or force extra pipeline stage
Extra pipeline stage delays loads as well: IPC hit!

Solution: Pipelining Writes
e B
=

st

MEM | WB
sw2 | st

e Store #1 performs tag check only in MEM stage
— <value, address, cache way> placed in store buffer (SB)
e \When store #2 reaches MEM stage
— Store #1 writes to data cache
o In the meantime, must handle RAW to store buffer
— Pending write in SB to address A
— Newer loads must check SB for conflict
— Stall/flush SB, or forward directly from SB
e Any load miss must also flush SB first

Summary
e Memory technology
e Memory hierarchy
— Temporal and spatial locality
e Caches
— Placement
— ldentification
— Replacement

t — Write Policy
— Otherwise SB D$ write may be to wrong line
e Can expand to >1 entry to overlap store misses (] Plpellne Integration of caches
42
© Hill, Lipasti

ECE/CS 552: Introduction To Computer
Architecture

