
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Memory HierarchyECE/CS 552: Memory Hierarchy
Instructor: Mikko H Lipasti

llFall 2010
University of Wisconsin-Madison

Lecture notes based on notes by Mark Hill
Updated by Mikko Lipasti

Memory HierarchyMemory Hierarchy

Registers

On-Chip
SRAMCI

TY

O
ST

© Hill, Lipasti
2

Off-Chip
SRAM

DRAM

Disk

CA
PA

C

SP
EE

D
 a

nd
 C

O

Memory HierarchyMemory Hierarchy
CPU

I & D L1 Cache

Temporal Locality
•Keep recently referenced 
items at higher levels

•Future references satisfied 
quickly

Spatial Locality
•Bring neighbors of recently 
referenced to higher levels

•Future references satisfied 
quickly

© Hill, Lipasti
3

Shared L2 Cache

Main Memory

Disk

Four Burning QuestionsFour Burning Questions
 These are:

– Placement
 Where can a block of memory go?

– Identification
 How do I find a block of memory?

© Hill, Lipasti
4

 How do I find a block of memory?

– Replacement
 How do I make space for new blocks?

– Write Policy
 How do I propagate changes?

 Consider these for registers and main memory
– Main memory usually DRAM

PlacementPlacement
Memory 
Type

Placement Comments

Registers Anywhere; 
Int, FP, SPR

Compiler/programmer 
manages

© Hill, Lipasti
5

Cache 
(SRAM)

Fixed in H/W Direct-mapped,
set-associative, 
fully-associative

DRAM Anywhere O/S manages

Disk Anywhere O/S manages

Register FileRegister File

 Registers managed by programmer/compiler
– Assign variables, temporaries to registers

– Limited name space matches available storage

© Hill, Lipasti
6

– Learn more in CS536, CS701

Placement Flexible (subject to data type)

Identification Implicit (name == location)

Replacement Spill code (store to stack frame)

Write policy Write-back (store on replacement)



ECE/CS 552: Introduction To Computer Architecture 2

Main Memory and Virtual MemoryMain Memory and Virtual Memory

 Use of virtual memory
– Main memory becomes another level in the memory 

hierarchy
– Enables programs with address space or working set

© Hill, Lipasti
7

Enables programs with address space or working set 
that exceed physically available memory
 No need for programmer to manage overlays, etc.
 Sparse use of large address space is OK

– Allows multiple users or programs to timeshare 
limited amount of physical memory space and address 
space

 Bottom line: efficient use of expensive resource, 
and ease of programming

Virtual MemoryVirtual Memory

 Enables
– Use more memory than system has

– Program can think it is the only one running
D ’ h dd

© Hill, Lipasti
8

 Don’t have to manage address space usage across programs

 E.g. think it always starts at address 0x0

– Memory protection
 Each program has private VA space: no-one else can clobber 

– Better performance
 Start running a large program before all of it has been loaded 

from disk

Virtual Memory Virtual Memory –– PlacementPlacement

 Main memory managed in larger blocks
– Page size typically 4K – 16K

 Fully flexible placement; fully associative

© Hill, Lipasti
9

y p ; y
– Operating system manages placement

– Indirection through page table

– Maintain mapping between:
 Virtual address (seen by programmer)

 Physical address (seen by main memory)

Virtual Memory Virtual Memory –– PlacementPlacement

 Fully associative implies expensive 
lookup?
– In caches, yes: check multiple tags in parallel

© Hill, Lipasti
10

 In virtual memory, expensive lookup is 
avoided by using a level of indirection
– Lookup table or hash table

– Called a page table

Virtual Memory Virtual Memory –– IdentificationIdentification

 Similar to cache tag array
– Page table entry contains VA, PA, dirty bit

Virtual Address Physical Address Dirty bit
0x20004000 0x2000 Y/N

© Hill, Lipasti
11

g y , , y
 Virtual address:

– Matches programmer view; based on register values
– Can be the same for multiple programs sharing same 

system, without conflicts
 Physical address:

– Invisible to programmer, managed by O/S
– Created/deleted on demand basis, can change

Virtual Memory Virtual Memory –– ReplacementReplacement

 Similar to caches:
– FIFO

– LRU; overhead too high

© Hill, Lipasti
12

; g
 Approximated with reference bit checks

 Clock algorithm

– Random

 O/S decides, manages
– CS537



ECE/CS 552: Introduction To Computer Architecture 3

Virtual Memory Virtual Memory –– Write PolicyWrite Policy

 Write back
– Disks are too slow to write through

 Page table maintains dirty bit

© Hill, Lipasti
13

g y
– Hardware must set dirty bit on first write

– O/S checks dirty bit on eviction

– Dirty pages written to backing store
 Disk write, 10+ ms

Virtual Memory ImplementationVirtual Memory Implementation

 Caches have fixed policies, hardware FSM 
for control, pipeline stall

 VM has very different miss penalties

© Hill, Lipasti
14

y p
– Remember disks are 10+ ms!

 Hence engineered differently

Page FaultsPage Faults

 A virtual memory miss is a page fault
– Physical memory location does not exist
– Exception is raised, save PC
– Invoke OS page fault handler

© Hill, Lipasti
15

– Invoke OS page fault handler
 Find a physical page (possibly evict)
 Initiate fetch from disk

– Switch to other task that is ready to run
– Interrupt when disk access complete
– Restart original instruction

 Why use O/S and not hardware FSM?

Address TranslationAddress Translation

 O/S and hardware communicate via PTE

VA PA Dirty Ref Protection
0x20004000 0x2000 Y/N Y/N Read/Write/

Execute

© Hill, Lipasti
16

 O/S and hardware communicate via PTE
 How do we find a PTE?

– &PTE = PTBR + page number * sizeof(PTE)

– PTBR is private for each program
 Context switch replaces PTBR contents

Address TranslationAddress Translation

PAVADPTBR

Virtual Page Number Offset

+

© Hill, Lipasti
17

PAVADPTBR +

Page Table SizePage Table Size

 How big is page table?
– 232 / 4K * 4B = 4M per program (!)

– Much worse for 64-bit machines

© Hill, Lipasti
18

 To make it smaller
– Use limit register(s)

 If VA exceeds limit, invoke O/S to grow region

– Use a multi-level page table

– Make the page table pageable (use VM)



ECE/CS 552: Introduction To Computer Architecture 4

Multilevel Page TableMultilevel Page Table

PTBR +

Offset

© Hill, Lipasti
19

+

+

Hashed Page TableHashed Page Table

 Use a hash table or inverted page table
– PT contains an entry for each real address

 Instead of entry for every virtual address

© Hill, Lipasti
20

– Entry is found by hashing VA

– Oversize PT to reduce collisions: #PTE = 4 x 
(#phys. pages)

Hashed Page TableHashed Page Table

PTBR

Virtual Page Number Offset

H h PTE2PTE1PTE0 PTE3

© Hill, Lipasti
21

PTBR Hash PTE2PTE1PTE0 PTE3

HighHigh--Performance VMPerformance VM

 VA translation
– Additional memory reference to PTE
– Each instruction fetch/load/store now 2 memory 

references

© Hill, Lipasti
22

references
 Or more, with multilevel table or hash collisions

– Even if PTE are cached, still slow
 Hence, use special-purpose cache for PTEs

– Called TLB (translation lookaside buffer)
– Caches PTE entries
– Exploits temporal and spatial locality (just a cache)

TLBTLB

© Hill, Lipasti
23

Virtual Memory ProtectionVirtual Memory Protection
 Each process/program has private virtual address 

space
– Automatically protected from rogue programs

 Sharing is possible, necessary, desirable
– Avoid copying staleness issues etc

© Hill, Lipasti
24

Avoid copying, staleness issues, etc.
 Sharing in a controlled manner

– Grant specific permissions
 Read
 Write
 Execute
 Any combination

– Store permissions in PTE and TLB



ECE/CS 552: Introduction To Computer Architecture 5

VM SharingVM Sharing

 Share memory locations by:
– Map shared physical location into both 

address spaces:

© Hill, Lipasti
25

 E.g. PA 0xC00DA becomes:
– VA 0x2D000DA for process 0

– VA 0x4D000DA for process 1

– Either process can read/write shared location

 However, causes synonym problem

VA SynonymsVA Synonyms

 Virtually-addressed caches are desirable
– No need to translate VA to PA before cache lookup

– Faster hit time, translate only on misses

bl

© Hill, Lipasti
26

 However, VA synonyms cause problems
– Can end up with two copies of same physical line

 Solutions:
– Flush caches/TLBs on context switch

– Extend cache tags to include PID & prevent duplicates
 Effectively a shared VA space (PID becomes part of address)

Main Memory DesignMain Memory Design

 Storage in commodity DRAM
 How do we map these to logical cache 

organization?

© Hill, Lipasti
27

g
– Block size

– Bus width

– Etc.

Main Memory DesignMain Memory Design

© Hill, Lipasti
28

Main Memory AccessMain Memory Access

 Each memory access

– 1 cycle address

– 5 cycle DRAM (really >> 10)

© Hill, Lipasti
29

– 1 cycle data

– 4 word cache block

 one word wide: (a=addr, d=delay, b=bus)

– adddddbdddddbdddddbdddddbdddddb

– 1 + 4 *(5+1) = 25 cycles

Main Memory AccessMain Memory Access

 Four word wide:

– adddddb

– 1 + 5 + 1 = 7 cycles

© Hill, Lipasti
30

 Interleaved (pipelined)

– adddddb

– ddddd  b

– ddddd    b

– ddddd      b

– 1 + 5 + 4 = 10 cycles



ECE/CS 552: Introduction To Computer Architecture 6

Error Detection and CorrectionError Detection and Correction

 Main memory stores a huge number of bits
– Probability of bit flip becomes nontrivial
– Bit flips (called soft errors) caused by

 Slight manufacturing defects

© Hill, Lipasti
31

 Slight manufacturing defects
 Gamma rays and alpha particles
 Interference
 Etc.

– Getting worse with smaller feature sizes
 Reliable systems must be protected from soft 

errors via ECC (error correction codes)
– Even PCs support ECC these days

Error Correcting CodesError Correcting Codes
 Probabilities:

P(1 word no errors) > P(single error) > P(two errors) >> P(>2 errors)

 Detection - signal a problem

© Hill, Lipasti
32

 Correction - restore data to correct value

 Most common

– Parity - single error detection

– SECDED - single error correction; double bit detection

 Supplemental reading on course web page!

11--bit ECCbit ECC
Power Correct #bits Comments

Nothing 0,1 1

SED 00 11 2 01 10 detect errors

© Hill, Lipasti
33

SED 00,11 2 01,10 detect errors

SEC 000,111 3 001,010,100 => 0
110,101,011 => 1

SECDED 0000,1111 4 One 1 => 0
Two 1’s => error
Three 1’s => 1

ECCECC

 Hamming distance
No of changes to convert one code to another

# 1’s 0 1 2 3 4
Result 0 0 Err 1 1

© Hill, Lipasti
34

– No. of changes to convert one code to another

– All legal SECDED codes are at Hamming 
distance of 4
 I.e. in single-bit SECDED, all 4 bits flip to go from 

representation for ‘0’ to representation for ‘1’

ECCECC

 Reduce overhead by doing codes on word, 
not bit

# bits SED overhead SECDED overhead

© Hill, Lipasti
35

# bits SED overhead SECDED overhead

1 1 (100%) 3 (300%)

32 1 (3%) 7 (22%)

64 1 (1.6%) 8 (13%)

n 1 (1/n) 1 + log2 n + a little

6464--bit ECCbit ECC

 64 bits data with 8 check bits
dddd…..d ccccccccc

 Use eight by 9 SIMMS = 72 bits

© Hill, Lipasti
36

 Intuition
– One check bit is parity
– Other check bits point to

 Error in data, or
 Error in all check bits, or
 No error



ECE/CS 552: Introduction To Computer Architecture 7

ECCECC

 To store (write)
– Use data0 to compute check0

– Store data0 and check0

© Hill, Lipasti
37

0 0

 To load
– Read data1 and check1

– Use data1 to compute check2

– Syndrome = check1 xor check2

 I.e. make sure check bits are equal

ECC SyndromeECC Syndrome

Syndrome Parity Implications

0 OK data1==data0

© Hill, Lipasti
38

n != 0 Not 
OK

Flip bit n of data1 to 
get data0

n != 0 OK Signal uncorrectable 
error

44--bit SECDED bit SECDED CodeCode
Bit Position 001 010 011 100 101 110 110 111

Codeword C1 C2 b1 C3 b2 b3 b4 P

C1 X X X X

C2 X X X X

C3 X X X X

parityevenP

bbbC

bbbC

bbbC

_
4323

4312

4211






© Hill, Lipasti
39

 Cn parity bits chosen specifically to:
– Identify errors in bits where bit n of the index is 1
– C1 checks all odd bit positions (where LSB=1)
– C2 checks all positions where middle bit=1
– C3 checks all positions where MSB=1

 Hence, nonzero syndrome points to faulty bit

3

P X X X X X X X X

44--bit SECDED Examplebit SECDED Example
Bit Position 1 2 3 4 5 6 7 8

Codeword C1 C2 b1 C3 b2 b3 b4 P

Original data 1 0 1 1 0 1 0 0 Syndrome

No corruption 1 0 1 1 0 1 0 0 0 0 0, P ok

1 bit corrupted 1 0 0 1 0 1 0 0 0 1 1, P !ok

parityevenP

bbbC

bbbC

bbbC

_
4323

4312

4211






© Hill, Lipasti
40

 4 data bits, 3 check bits, 1 parity bit
 Syndrome is xor of check bits C1-3

– If (syndrome==0) and (parity OK) => no error
– If (syndrome != 0) and (parity !OK) => flip bit position pointed 

to by syndrome
– If syndrome != 0) and (parity OK) => double-bit error

p ,

2 bits corrupted 1 0 0 1 1 1 0 0 1 1 0, P ok

SummarySummary

 Memory hierarchy: Register file
– Under compiler/programmer control

– Complex register allocation algorithms to optimize 
tili ti

© Hill, Lipasti
41

utilization

 Memory hierarchy: Virtual Memory
– Placement: fully flexible

– Identification: through page table

– Replacement: approximate LRU or LFU

– Write policy: write-through

SummarySummary

 Page tables
– Forward page table

 &PTE = PTBR + VPN * sizeof(PTE)

M ltil l t bl

© Hill, Lipasti
42

– Multilevel page table
 Tree structure enables more compact storage for sparsely 

populated address space

– Inverted or hashed page table
 Stores PTE for each real page instead of each virtual page

 HPT size scales up with physical memory

– Also used for protection, sharing at page level



ECE/CS 552: Introduction To Computer Architecture 8

SummarySummary

 TLB
– Special-purpose cache for PTEs
– Often accessed in parallel with L1 cache

 Main memory design

© Hill, Lipasti
43

 Main memory design
– Commodity DRAM chips
– Wide design space for

 Minimizing cost, latency
 Maximizing bandwidth, storage

– Susceptible to soft errors
 Protect with ECC (SECDED)
 ECC also widely used in on-chip memories, busses


