
ECE/CS 552: Introduction To Computer Architecture 1

ECE/CS 552: Parallel ECE/CS 552: Parallel
ProcessorsProcessors

Instructor: Mikko H Lipasti

Fall 2010
i i f i i diUniversity of Wisconsin-Madison

Parallel ProcessorsParallel Processors
 Why multicore now?
 Thread-level parallelism
 Shared-memory multiprocessors

Coherence

© Hill, Lipasti
2

– Coherence
– Memory ordering
– Split-transaction buses

 Multithreading
 Multicore processors

Why Why MulticoreMulticore Now?Now?

 Moore’s Law for device integration
 Chip power consumption
 Single-thread performance trend

[source: Intel]

Leakage Power (Static/DC)Leakage Power (Static/DC)
 Transistors aren’t perfect on/off switches
 Even in static CMOS, transistors leak

– Channel (source/drain) leakage
– Gate leakage through insulator

 High-K dielectric replacing SiO2 helps
 Leakage compounded by

Source

Gate

g p y
– Low threshold voltage

 Low Vth => fast switching, more leakage
 High Vth => slow switching, less leakage

– Higher temperature
 Temperature increases with power
 Power increases with C, V2, A, f

 Rough approximation: leakage proportional to area
– Transistors aren’t free, unless they’re turned off

 Controlling leakage
– Power gating (turn off unused blocks)

Drain

Dynamic PowerDynamic Power

 Aka AC power, switching power
 Static CMOS: current flows when transistors turn on/off

AfkCVPdyn
2

– Combinational logic evaluates
– Sequential logic (flip-flop, latch) captures new value (clock edge)

 Terms
– C: capacitance of circuit (wire length, no. & size of transistors)
– V: supply voltage
– A: activity factor
– f: frequency

 Moore’s Law: which terms increase, which decrease?
– Historically voltage scaling has saved us, but not any more

Reducing Dynamic PowerReducing Dynamic Power
 Reduce capacitance

– Simpler, smaller design
– Reduced IPC

 Reduce activity
– Smarter designSmarter design
– Reduced IPC

 Reduce frequency
– Often in conjunction with reduced voltage

 Reduce voltage
– Biggest hammer due to quadratic effect, widely employed
– However, reduces max frequency, hence performance
– Dynamic (power modes)

 E.g. Transmeta Long Run, AMD PowerNow, Intel Speedstep

ECE/CS 552: Introduction To Computer Architecture 2

Frequency/Voltage relationshipFrequency/Voltage relationship
 Lower voltage implies lower frequency

– Lower Vth increases delay to sense/latch 0/1

 Conversely, higher voltage enables higher frequency
– Overclocking

 Sorting/binning and setting various Vdd & Vth

– Characterize device, circuit, chip under varying stress conditions

– Black art – very empirical & closely guarded trade secret

– Implications on reliability
 Safety margins, product lifetime

 This is why overclocking is possible

Frequency/Voltage ScalingFrequency/Voltage Scaling
 Voltage/frequency scaling rule of thumb:

– +/- 1% performance buys -/+ 3% power (3:1 rule)
 Hence, any power-saving technique that saves less than 3x

power over performance loss is uninteresting
 Example 1:

– New technique saves 12% power
– However, performance degrades 5%
– Useless, since 12 < 3 x 5
– Instead, reduce f by 5% (also V), and get 15% power savings

 Example 2:
– New technique saves 5% power
– Performance degrades 1%
– Useful, since 5 > 3 x 1

 Does this rule always hold?

Multicore ManiaMulticore Mania

 First, servers
– IBM Power4, 2001

 Then desktopsp
– AMD Athlon X2, 2005

 Then laptops
– Intel Core Duo, 2006

 Your cellphone
– Baseband/DSP/application/graphics

Why MulticoreWhy Multicore

Core Core Core
Core

Core

Core

Core

Single Core Dual Core Quad Core

Core area A ~A/2 ~A/4

Core power W ~W/2 ~W/4

Chip power W + O W + O’ W + O’’

Core performance P 0.9P 0.8P

Chip performance P 1.8P 3.2P

f

Amdahl’s LawAmdahl’s Law

Time

C

P
U

s

1
1-f

f

n

f – fraction that can run in parallel
1-f – fraction that must run serially

n
f

f
Speedup




)1(

1

f
n
f

f
n 




 1

1

1

1
lim

Fixed Chip Power BudgetFixed Chip Power Budget

 Amdahl’s Law
– Ignores (power) cost of n cores

C

P
U

s

Time

1 1-f
f

n

– Ignores (power) cost of n cores

 Revised Amdahl’s Law
– More cores  each core is slower

– Parallel speedup < n

– Serial portion (1-f) takes longer

– Also, interconnect and scaling overhead

ECE/CS 552: Introduction To Computer Architecture 3

Fixed Power ScalingFixed Power Scaling

8

16

32

64

128

P
er
fo
rm

an
ce

99.9% Parallel

99% Parallel

 Fixed power budget forces slow cores
 Serial code quickly dominates

1

2

4

1 2 4 8 16 32 64 128

C
h
ip

of cores/chip

90% Parallel

80% Parallel

MulticoresMulticores Exploit ThreadExploit Thread--level level ParallelismParallelism

 Instruction-level parallelism
– Reaps performance by finding independent work in a single

thread

 Thread-level parallelism
– Reaps performance by finding independent work across multiple

threads

Hi i ll i li i l ll l kl d Historically, requires explicitly parallel workloads
– Originate from mainframe time-sharing workloads
– Even then, CPU speed >> I/O speed
– Had to overlap I/O latency with “something else” for the CPU to

do
– Hence, operating system would schedule other

tasks/processes/threads that were “time-sharing” the CPU

ThreadThread--level Parallelismlevel Parallelism
CPU1

CPU1

CPU2

Disk access

Disk access

CPU1

CPU2

Think time

Think time

Single user:
CPU1Disk access Think time Increase in

number of
active threads

reduces
effectiveness

of spatial
locality by
increasing

working set.

Time-shared:

 Reduces effectiveness of temporal and spatial locality

CPU3

Disk access

Disk access

CPU3

Think time

Think time

Time dilation of each thread reduces
effectiveness of temporal locality.

ThreadThread--level Parallelismlevel Parallelism
 Motivated by time-sharing of single CPU

– OS, applications written to be multithreaded

 Quickly led to adoption of multiple CPUs in a single
system
– Enabled scalable product line from entry-level single-CPU

systems to high-end multiple-CPU systems
– Same applications, OS, run seamlesslypp , , y
– Adding CPUs increases throughput (performance)

 More recently:
– Multiple threads per processor core

 Coarse-grained multithreading
 Fine-grained multithreading
 Simultaneous multithreading

– Multiple processor cores per die
 Chip multiprocessors (CMP)
 Chip multithreading (CMT)

MulticoreMulticore and Multiprocessor Systemsand Multiprocessor Systems
 Focus on shared-memory symmetric multiprocessors

– Many other types of parallel processor systems have been
proposed and built

– Key attributes are:
 Shared memory: all physical memory is accessible to all CPUs
 Symmetric processors: all CPUs are alike

– Other parallel processors may:p p y
 Share some memory, share disks, share nothing

– E.g. GPGPU unit in the textbook

 May have asymmetric processing units or noncoherent caches

 Shared memory idealisms
– Fully shared memory: usually nonuniform latency
– Unit latency: approximate with caches
– Lack of contention: approximate with caches
– Instantaneous propagation of writes: coherence required

UMA vs. NUMAUMA vs. NUMA

Processor Cache Processor Cache Processor Cache Processor

Memory Memory Memory Memory

Cache

Interconnection network
Uniform
memory
latency

Uniform
Memory
Access
(dancehall)

L l

Processor Cache Processor Cache Processor Cache Processor

Memory Memory Memory Memory

Cache

Interconnection network

Short
local
latency

Nonuniform
Memory
Access

Long remote memory latency

ECE/CS 552: Introduction To Computer Architecture 4

Cache Coherence ProblemCache Coherence Problem

P0 P1
Load A Load A
Store A<= 1 Load A

A 0 A 01

Memory

Cache Coherence ProblemCache Coherence Problem

P0 P1
Load A Load A
Store A<= 1 Load A

A 0 A 0

Memory

1 A 1

Invalidate ProtocolInvalidate Protocol

 Basic idea: maintain single writer property
– Only one processor has write permission at any point in time

 Write handling
– On write, invalidate all other copies of data
– Make data private to the writer

All it t til d t i t d– Allow writes to occur until data is requested
– Supply modified data to requestor directly or through memory

 Minimal set of states per cache line:
– Invalid (not present)
– Modified (private to this cache)

 State transitions:
– Local read or write: I->M, fetch modified
– Remote read or write: M->I, transmit data (directly or through memory)
– Writeback: M->I, write data to memory

Invalidate Protocol Invalidate Protocol
OptimizationsOptimizations
 Observation: data can be read-shared

– Add S (shared) state to protocol: MSI

 State transitions:
– Local read: I->S, fetch shared
– Local write: I->M, fetch modified; S->M, invalidate other copies
– Remote read: M->S, supply data
– Remote write: M->I, supply data; S->I, invalidate local copy

 Observation: data can be write-private (e.g. stack frame)
– Avoid invalidate messages in that case
– Add E (exclusive) state to protocol: MESI

 State transitions:
– Local read: I->E if only copy, I->S if other copies exist
– Local write: E->M silently, S->M, invalidate other copies

Sample Invalidate Protocol (MESI)Sample Invalidate Protocol (MESI)

M BR

LW

EV or
BW

LW

I

SE

EV or
BW or
BU

LR/SLR/~S

LW

BW

EV or
BW

BR

Sample Invalidate Protocol (MESI)Sample Invalidate Protocol (MESI)
Current
State s

Event and Local Coherence Controller Responses and Actions (s' refers to next state)

Local Read (LR) Local Write
(LW)

Local
Eviction (EV)

Bus Read
(BR)

Bus Write
(BW)

Bus Upgrade
(BU)

Invalid (I) Issue bus read
if no sharers then
s' = E
else s' = S

Issue bus
write
s' = M

s' = I Do nothing Do nothing Do nothing

Shared (S) Do nothing Issue bus
upgrade
s' = M

s' = I Respond
shared

s' = I s' = I

Exclusive
(E)

Do nothing s' = M s' = I Respond
shared
s' = S

s' = I Error

Modified
(M)

Do nothing Do nothing Write data
back;
s' = I

Respond
dirty;
Write data
back;
s' = S

Respond
dirty;
Write data
back;
s' = I

Error

ECE/CS 552: Introduction To Computer Architecture 5

Snoopy Cache CoherenceSnoopy Cache Coherence
 Snooping implementation

– Origins in shared-memory-bus systems
– All CPUs could observe all other CPUs requests on the bus;

hence “snooping”
 Bus Read, Bus Write, Bus Upgrade

– React appropriately to snooped commands
 Invalidate shared copies Invalidate shared copies
 Provide up-to-date copies of dirty lines

– Flush (writeback) to memory, or
– Direct intervention (modified intervention or dirty miss)

Directory Cache CoherenceDirectory Cache Coherence
 Directory implementation

– Extra bits stored in memory (directory) record MSI state of line
– Memory controller maintains coherence based on the current

state
– Other CPUs’ commands are not snooped, instead:

 Directory forwards relevant commands
– Ideal filtering: only observe commands that you need to

observeobserve
– Meanwhile, bandwidth at directory scales by adding memory

controllers as you increase size of the system
 Leads to very scalable designs (100s to 1000s of CPUs)

 Can provide both snooping & directory
– AMD Opteron switches based on socket count

Memory ConsistencyMemory Consistency

 How are memory references from different processors interleaved?
f hi i ll ifi d h i i b diffi l

Proc0Reorder
load
before
store

st A=1
if (load B==0) {
 ...critical section
}

Proc1

st B=1
if (load A==0) {
 ...critical section
}

 If this is not well-specified, synchronization becomes difficult or even
impossible

– ISA must specify consistency model
 Common example using Dekker’s algorithm for synchronization

– If load reordered ahead of store (as we assume for an OOO CPU)
– Both Proc0 and Proc1 enter critical section, since both observe that other’s

lock variable (A/B) is not set
 If consistency model allows loads to execute ahead of stores, Dekker’s

algorithm no longer works
– Common ISAs allow this: IA-32, PowerPC, SPARC, Alpha

Sequential Consistency [Lamport 1979]Sequential Consistency [Lamport 1979]

P1

P2 P3

P4

Memory

 Processors treated as if they are interleaved processes on a single
time-shared CPU

 All references must fit into a total global order or interleaving that
does not violate any CPUs program order

– Otherwise sequential consistency not maintained
 Now Dekker’s algorithm will work
 Appears to preclude any OOO memory references

– Hence precludes any real benefit from OOO CPUs

Memory

HighHigh--Performance Sequential ConsistencyPerformance Sequential Consistency

 Coherent caches isolate CPUs if no sharing is
occurring

– Absence of coherence activity means CPU is free to
reorder references

 Still have to order references with respect to p
misses and other coherence activity (snoops)

 Key: use speculation
– Reorder references speculatively

– Track which addresses were touched speculatively

– Force replay (in order execution) of such references
that collide with coherence activity (snoops)

HighHigh--Performance Sequential ConsistencyPerformance Sequential Consistency

Out-of-order
processor

core Bus writes
Bus upgrades

Load queue

System
address bus

Other
processors

P

P

 Load queue records all speculative loads
 Bus writes/upgrades are checked against LQ
 Any matching load gets marked for replay
 At commit, loads are checked and replayed if necessary

– Results in machine flush, since load-dependent ops must also replay
 Practically, conflicts are rare, so expensive flush is OK

In-order commit
P

ECE/CS 552: Introduction To Computer Architecture 6

MultithreadingMultithreading
 Basic idea: CPU resources are expensive and should not be left idle
 1960’s: Virtual memory and multiprogramming

– VM/MP invented to tolerate latency to secondary storage
(disk/tape/etc.)

– Processor:secondary storage cycle-time ratio: microseconds to tens of
milliseconds (1:10000 or more)

– OS context switch used to bring in other useful work while waiting for
page fault or explicit read/write

– Cost of context switch must be much less than I/O latency (easy)Cost of context switch must be much less than I/O latency (easy)
 1990’s: Memory wall and multithreading

– Processor: non-cache storage cycle-time ratio: nanosecond to fractions
of a microsecond (1:500 or worse)

– H/W task switch used to bring in other useful work while waiting for
cache miss

– Cost of context switch must be much less than cache miss latency
 Very attractive for applications with abundant thread-level

parallelism
– Commercial multi-user workloads

Approaches to MultithreadingApproaches to Multithreading

 Fine-grained multithreading
– Switch contexts at fixed fine-grain interval (e.g. every

cycle)
– Need enough thread contexts to cover stallsNeed enough thread contexts to cover stalls
– Example: Tera MTA, 128 contexts, no data caches

 Benefits:
– Conceptually simple, high throughput, deterministic

behavior
 Drawback:

– Very poor single-thread performance

Approaches to MultithreadingApproaches to Multithreading
 Coarse-grained multithreading

– Switch contexts on long-latency events (e.g. cache
misses)

– Need a handful of contexts (2-4) for most benefit

 Example: IBM Northstar 2 contexts Example: IBM Northstar, 2 contexts
 Benefits:

– Simple, improved throughput (~30%), low cost

– Thread priorities mostly avoid single-thread
slowdown

 Drawback:
– Nondeterministic, conflicts in shared caches

– Not suitable for out-of-order processors

Approaches to MultithreadingApproaches to Multithreading
 Simultaneous multithreading

– Multiple concurrent active threads (no notion of thread
switching)

– Need a handful of contexts for most benefit (2-8)

 Example: Intel P4, Core i7, IBM Power 5/6/7,
 Benefits: Benefits:

– Natural fit for OOO superscalar
– Improved throughput
– Low incremental cost

 Drawbacks:
– Additional complexity over OOO superscalar
– Cache conflicts

SMT Microarchitecture (from Emer, PACT ‘01)SMT Microarchitecture (from Emer, PACT ‘01)

Multithreading with Multithreading with MulticoreMulticore
 Chip Multiprocessors (CMP)
 Share nothing in the core:

– Implement multiple cores on die
– Perhaps share L2, system interconnect (memory and I/O bus)

 Example: IBM Power4, 2 cores per die, shared L2
 Benefits:Benefits:

– Simple replication
– Packaging density
– Low interprocessor latency
– ~2x throughput

 Drawbacks:
– L2 shared – conflicts
– Mem bandwidth shared – could become bottleneck

ECE/CS 552: Introduction To Computer Architecture 7

Approaches to MultithreadingApproaches to Multithreading
 Chip Multiprocessors (CMP)
 Becoming very popular

Processor Cores/
chip

Multi-
threaded?

Resources shared

IBM Power 4 2 No L2/L3, system interface

IBM Power 5 2 Yes (2T) Core, L2/L3, system interface

Sun Ultrasparc 2 No System interface

Sun Niagara 8 Yes (4T) Everything

Intel Pentium D 2 Yes (2T) Core, nothing else

Intel Core i7 4 Yes L3, DRAM, system interface

AMD Opteron 2, 4, 6,
12

No L3, DRAM, system interface

Approaches to MultithreadingApproaches to Multithreading
 Chip Multithreading (CMT)

– Similar to CMP

 Share something in the core:
– Expensive resource, e.g. floating-point unit (FPU)
– Also share L2, system interconnect (memory and I/O bus)

 Example:
– Sun Niagara, 8 cores, one FPU
– AMD Bulldozer, FPU shared by two adjacent cores

 Benefit: amortize cost of expensive resource
 Drawbacks:

– Shared resource may become bottleneck
– Next generation Niagara does not share FPU

Multithreaded ProcessorsMultithreaded Processors

MT Approach Resources shared between threads Context Switch Mechanism

None Everything Explicit operating system context
switch

Fine-grained Everything but register file and control logic/state Switch every cycle

Coarse-grained Everything but I-fetch buffers, register file and
con trol logic/state

Switch on pipeline stall

SMT Everything but instruction fetch buffers, return All contexts concurrently active; no

 Many approaches for executing multiple threads on a
single die
– Mix-and-match: IBM Power7 8-core CMP x 4-way SMT

address stack, architected register file, control
logic/state, reorder buffer, store queue, etc.

switching

CMT Various core components (e.g. FPU), secondary
cache, system interconnect

All contexts concurrently active; no
switching

CMP Secondary cache, system interconnect All contexts concurrently active; no
switching

IBM Power4: Example CMPIBM Power4: Example CMP

Crossbar interconnect

Power4 core0

L1 I$ L1 D$

Power4 core1

L1 I$L1 D$

Coherent
I/O

interfaceP0 STQ P1 STQ

L
3

ta
gs

 &
 I

/F

L2 tags

MSHR SNP Q WB Q

L2 data

~512KB L2 slice

P0 STQ P1 STQ

L2 tags L2 data

MSHR SNP Q WB Q

~512KB L2 slice

P0 STQ P1 STQ

L2 tags L2 data

MSHR SNP Q WB Q

~512KB L2 slice

P0 STQ P1 STQ

L2 tags L2 data

MSHR SNP Q WB Q

~512KB L2 slice

Address/
response data
interconnect

Address/
response data
interconnect

Address/
response data
interconnect

Niagara Case StudyNiagara Case Study
 Targeted application: web servers

– Memory intensive (many cache misses)

– ILP limited by memory behavior

– TLP: Lots of available threads (one per client)

D i l i i h h (/) Design goal: maximize throughput (/watt)
 Results:

– Pack many cores on die (8)

– Keep cores simple to fit 8 on a die, share FPU

– Use multithreading to cover pipeline stalls

– Modest frequency target (1.2 GHz)

Niagara Block Diagram Niagara Block Diagram [Source: J. [Source: J. LaudonLaudon]]

 8 in-order cores, 4 threads each
 4 L2 banks, 4 DDR2 memory controllers

ECE/CS 552: Introduction To Computer Architecture 8

UltrasparcUltrasparc T1 Die Photo T1 Die Photo [Source: J. [Source: J. LaudonLaudon]]
Niagara Pipeline Niagara Pipeline [Source: J. Laudon][Source: J. Laudon]

 Shallow 6-stage pipeline
 Fine-grained multithreading

T2000 System PowerT2000 System Power

 271W running SpecJBB2000
 Processor is only 25% of total
 DRAM & I/O next, then conversion losses

Niagara SummaryNiagara Summary
 Example of application-specific system

optimization
– Exploit application behavior (e.g. TLP, cache

misses, low ILP)

– Build very efficient solutionBuild very efficient solution

 Downsides
– Loss of general-purpose suitability

– E.g. poorly suited for software development
(parallel make, gcc)

– Very poor FP performance (fixed in Niagara 2)

SummarySummary
 Why multicore now?
 Thread-level parallelism
 Shared-memory multiprocessors

Coherence

© Hill, Lipasti
47

– Coherence
– Memory ordering
– Split-transaction buses

 Multithreading
 Multicore processors

