
Mikko Lipasti
Spring 2002

ECE/CS 552 : Introduction to Computer Architecture
IN-CLASS MIDTERM EXAM

March 14th, 2002

NAME:__

This exam is to be done individually in 75 minutes. Total 10 Questions, 75 points

1. (10 Points) A sequence of bits (binary digits) can mean various things depending on

what it represents. Fill in the holes in the following table by identifying either the
missing 8-bit pattern that represents the specified number, or computing the number
or numbers that the 8-bit pattern represents.
NOTE: fill in all the empty slots in the table.

8-bit pattern Unsigned representation Signed representation

0101 1100

1000 1000

1111 0111

 -101

 75

Show your work here:

Mikko Lipasti
Spring 2002

2. (4 point) A fixed number of bits can only be used to represent a finite number of
unique numbers. Fill in the least and greatest decimal numbers you can
represent with a 7-bit pattern in the following table?

7-bit representation Least decimal number Greatest decimal number

Unsigned

Signed 2’s complement

Show your work here:

3. (4 points) Explain how an 8-bit ALU can detect arithmetic overflow when
adding both signed and unsigned numbers:

Unsigned overflow:

Signed overflow:

4. (2 points) Discuss if and how a processor should react when overflow is detected.

Mikko Lipasti
Spring 2002

5. (10 points) The IBM study of pipelined processor performance assumed an
instruction mix based on popular C programs in use in the 1980s. Since then,
object-oriented languages like C++ and Java have become much more common.
One of the effects of these languages is that object inheritance and
polymorphism can be used to replace conditional branches with virtual function
calls. Given the IBM instruction mix and CPI shown in the following table,
perform the following transformations to reflect the use of C++/Java, and
recompute the overall CPI and speedup or slowdown due to this change (fill in
the table to reflect your work to receive partial credit):

� Replace 50% of taken conditional branches with a load instruction
followed by a jump register instruction (the load and jump register
implement a virtual function call).

� Replace 25% of not-taken branches with a load instruction followed by a
jump register instruction.

New overall CPI:

Speedup/slowdown:

Instruction type Old Mix % Latency Old CPI Cycles New Mix % Instructions Cycles New CPI
Load 25.0% 2 0.50 500
Store 15.0% 1 0.15 150
Arithmetic 30.0% 1 0.30 300
Logical 10.0% 1 0.10 100
Branch - T 8.0% 3 0.24 240
Branch - NT 6.0% 2 0.12 120
Jump 5.0% 2 0.10 100
Jump register 1.0% 3 0.03 30
Total 100.0% 1.54 1540

Mikko Lipasti
Spring 2002

Assume the standard 5-stage pipeline discussed in class. Also assume that rather
than having a separate PC (program counter) register, as in the MIPS instruction
set, consider an instruction set that uses the R31 general purpose register as the
program counter. The pipeline is summarized in the following table.

Pipestage Action
IF Fetch instruction from MEM[R31]
RD Read source operands from R0..R31
EX Execute ALU instructions;

Generate address for load/store
MEM Loads read from data memory;

Stores write to data memory
WB Results are written back to registers R0..R31

6. (5 points) Does this pipeline have any WAR or WAW hazards for register or

memory operands? If so, describe what they are. If not, prove why not.

7. (5 points) Does this pipeline have any additional RAW hazards besides the ones

discussed in lecture? If so, describe what they are. If not, prove why not.

Mikko Lipasti
Spring 2002

Design of a Multicycle Datapath and Control Logic

Objective:

Given the following instruction set with four 8-bit instructions, design a multicycle data
path and control logic. Assume 4 8-bit registers and an 8-bit ALU. Don’t worry about
initial values of PC, registers, etc. (do not show reset, clear, or preset signals).

Instruction set:

� load $p1, ($p2)
• Contents of memory location ($p2) are loaded into register $p1.

� store $p1,($p2)
• Contents of register $p1 are stored into memory location ($p2).

� sub $p1,$p2
• $p1=$p1-$p2

� branch_negative $p1,(4 bit PC-relative target)
• If $p1 is negative, then branch to newPC + the sign extended target,

otherwise this instruction is a NOP.
Opcode table:

Assembly level syntax: {MSB……LSB}

� load $p1, ($p2)
00, aa, bb, XX

� store $p1, ($p2)

01, aa, bb, XX

� sub $p1, $p2
10, aa, bb, XX

� branch_negative $p1, B B B B

11, aa, B B B B

Multicycle Execution Stages:
� IF – fetch instruction from memory, compute newPC = PC + 1
� RD – read instruction source operands from register file, compute branch

target tPC = newPC + SE(BBBB)
� EX/MEM – load from memory, store to memory, execute sub, or check

branch condition

� WB – write load or ALU result to register file

Instruction Opcode
load 00
store 01
sub 10

branch_negative 11

Mikko Lipasti
Spring 2002

8. (15 points) Design a shared 8-bit ALU for a multicycle data path for this
instruction set. Assume that each logic gate can have no more than 4 inputs and
has a delay of 1ns. Consider the combinational delay for both a ripple-carry and
a carry-lookahead adder, choose the faster option, and show your design below.
Include any control inputs needed in this ALU. Recall that this ALU is used for
executing the sub instruction, computing newPC, and computing the branch
target.

8-bit ripple-carry ALU combinational delay:

8-bit carry-lookahead ALU combinational delay:

Final ALU Design:

Mikko Lipasti
Spring 2002

9. (10 points) Given the multicycle datapath elements below, add all the data paths,
control signals, and control inputs you will need to implement the 4 instructions
in this instruction set. All data and control signal paths should indicate width.
Some control signals and data paths are included as examples.

Memory

Instruction
Register

Memory Data
Register

Register File

ALU

ALUout

IFetch

IRWrite

RFWrite

Mikko Lipasti
Spring 2002

10. (10 points) Complete the incomplete state transition and control signal table

shown below. Add each control signal in your data path as a column in the
table, and show what value each signal should have for each state in the table.
Also show the next state given any relevant input signals (use ‘x’ as shown for
don’t care).

Control Signals (fill in additional ones in empty columns) State Input/Next State
IFetch IR

Wri
te

RF
Wri
te

IF X/RD 1 1 0

RD Op=00/MEM-LD
Op=01/MEM-ST
Op=10/EX-SUB
Op=11/EX-BR

0 0 0

MEM-LD 0 0 0

MEM-ST 0 0 0

EX-SUB 0 0 0

EX-BR 0 0 0

WB X/IF 0 0 1

